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The penturbed clectron iemperature inside magaetic 1slands depends on the
the local value of the shear and can be ¢ither higher or lower than the
environment temperature; the clectron density and pressure perturbations.,
however, display no such dependency on the shear.

This thesis, chupier 5.

Radia! transport is significantly reduced in regions of negative shear.
This thesis, chapter 5.

The analysis of MHD modes provides a powerful ool for locai
determination of the safety factor.
This thesis, chapter 5.

The main obstacle in the analysis of MHD modes is not the quality of
measuring equipment, nor of analysis techniques, but the availability of
fast sampled data (i.e. > 40 kHz) from various relevant diagnostics on
overlapping time v.indows during the occurrence of MHD phenomena.

Function parametrization is a generally applicable labour saving technique
for inverting computer models that can provide fast analyses with error
estimates of experiments that are repeated often; therefore it deserves more
attention in the physical community than it has received so far.

This thesis, chapter 4.

Given the striking similarity of the equations of fluid dynamics and
magnetohydrodynamics, the two branches of physics involved should
work together more closely, in particular where investigations into chaos
and turbulence are concerned.

This thesis, chapter 2.
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The great quantity of reports erroneously confirming the heat and neutron
production in the electrolysis experiment of Pons and Fleischmann
following their announcement in April 1990 is partly due to the fact that the
difficulty of calorimetry and neutron measurement is generally
underestimated.

Scientific lectures would be less boring and Dutch science would be
stimulated if more attention was paid on the Universities to the subject of
presentation.

Recent occurences in Eastern Europe allow computation of the lifetime of
communist regimes at about 45 years. It is perhaps no coincidence that this
is also the time for a young man to grow old.

The true cause of many important ecological problems (global warming,
pollution, traffic congestion etc.) is overpopulation.

Raising the cost of owning or driving a car will not result in a significant
reduction of car use. Therefore it is to be recommended that car use be
made unattractive by other means, e.g. by severely limiting access to the
areas that form the goals for excursions by car, such as city centres. As a
side effect, these areas will then become more quiet, clean and beautiful.

The introduction of ihe concept of functionality in design and architecture
has not led to greater enjoyment of their products nor to an improvement in
the quality of life and this concept should therefore be abandoned.

Fusion remains a hot topic even after Pons and Fleischmann.

Hoewel het aloude spreekwoord dat arbeid adelt ook heden ten dage nog
opgeld doet, geldt voor het merendeel van het werk slechts dat arbeid
vermoeirt.




1. Introduction

1.1 Plasma

Conditions in the universe are quite different from those on earth. Whereas in the low-
temperature earthly environment matter is primarily solid, liquid or gaseous, most observable
matter in the universe (over 99%) is in the plasma state.

Natural examples of plasmas on earth are lightning (whether ball lightning is a plasma is
still a matter of debate at the time of this writing) and related phenomena (sparks). Attempts to
create plasmas under laboratory conditions on earth generally involve exciting a gas by heating
it, applying electromagnetic radiation or passing electric currents through it until it ionizes.

Because plasmas are rare in the natural earthly environment, research into its
characteristics did not start until the end of the previous century. Since then this has become an
important branch of physics, and a number of successful applications for plasmas have been
developed, amongst which the familiar fluorescent tube and the dry-etching process used in
microchip fabrication.

1.2 Fusion and fusion research

Once it was realized that our main energy source, the sun, is a gigantic plasma and a fusion
reactor kept together (confined) by its own gravitation, the question arose whether it is possible
to mimic the conditions of the sun and generate energy in a similar way here on earth. It is
clear, however, that a plasma in a laboratory must be confined by some other force than
gravitation.

There are a number of reactions between light elements that yield energy, but some are
easier to initiate than others. The light elements involved in ‘easy' fusion reactions have long
been used up in the sun, while they are still available on earth as relics of early cosmological
processes. Profiting from this gift of nature, the goal of fusion research is to create a mixture of
deuterium, D, and tritium, T, or alternatively D and helium, 3He, at such temperatures and
densities that fusion will occur at a sufficient rate. The reaction

2D +3T — *He + 'n + 17.6 MeV,

the fastest reaction occurring in a fusion plasma, produces an enormous amount of energy in
accordance with the mass deficit E = mc2. Theoretically, 1 kg of D-T gas might yield as much



energy as ten million liters of oil. And since the raw materials (D and Li which is used to breed
T) are abundant, a fusion reactor might solve the problems of energy supply for thousands of
years, even at low reactor efficiencies.

Thus motivated, the European Community has set a clear goal for its fusion program:
the objective is to obtain a source of energy that: (a) produces electricity at an acceptable cost
while operating reliably; (b) does not produce carbon dioxide or harmful chemicals; (c)
produces only a small amount of nuclear waste during normal operation and after termination of
operation; (d) cannot cause disruptive accidents; (e) does not impose a large demand on scarce
natural resources; and finally (f) does not have any military applications. The USA, the USSR
and Japan have similar programs, and forces are joined in an international cooperation project:
ITER.

1.3 The tokamak

In the course of a number of decennia several schemes were developed for generating plasmas
in the required conditions (hot and dense). Amongst these are inertial or laser fusion and
magnetic confinement devices of many types. The most successful concept has so far been the
tokamak, originally developed in the USSR (‘tokamak' is an acronym of toroidal’naya kamera
and magnitnaya katushka, meaning 'toroidal chamber' and 'magnetic coil’). A tokamak is a
doughnut-shaped (i.e. toroidal) device with a strong magnetic field in the toroidal direction
(Fig. 1.1). A gas is injected into the vessel and ionized, after which a toroidal current is induced
in the plasma. The plasma current then induces a poloidal magnetic field that provides an
inward pinch force on the particles that are now closely bound to the magnetic field lines, and
thus the plasma may detach itself (partly) from the wall. The main advantage of this concept is
that it is a closed system so that there are no end-losses such as in a linear device.

Advantages of tokamak fusion energy generation

Given the enormous energy yield from a small amount of fuel the natural fuel resources can be
considered to be essentially limitless: the oceans contain enough D to supply energy for millenia
to come, and it can be won cheaply. The first generation fusion reactors will also need tritium,
T, which can be bred from Lithium, Li, that must be mined. The exhaust of a fusion reactor
will consist mainly of He, a harmless inert gas; no CO, or any other climate-affecting gases will
be produced. A fusion reactor is inherently safe: a 'meltdown’ or runaway reaction is not
possible as there is always only a very limited amount of fuel present in the device: e.g. the
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Fig. 1.1  Design of the ITER tokamak. The toroidal vacuum vessel in which the plasma is
held can be seen, as well as several external coils that generate the magnetic field that confines
and shapes the plasma.
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energy content of the plasma of a JET-size device is at any time during operations less than that
of 10 liter of boiling water. Finally, a serious technical failure will always result in a termination
of the burn.

Disadvantages of tokamak fusion energy generation

A major disadvantage of the tokamak concept is that power stations based on this idea will be
very costly and large, and that they can only be used where large electricity distribution grids
are available. Also, such power stations require a high level of technology, comparable to space
travel, which does not favour developing countries. Some people fear that concentrated power
generation increases the political vulnerability of a country to terrorism. However, some of
these disadvantages also apply to other forms of concentrated electricity generation such as
hydroelectric power.

Another disadvantage is that, while the exhaust is reasonably safe, parts of the power
stations become highly radioactive. Materials research aiming at finding materials able to
withstand an intense neutron flux for a prolonged period of time is advancing. Yet it is
estimated that the average lifetime of components in a power station is about 10 years, implying
that substantial amounts of highly radioactive waste are produced in this way. This problem
reduces the advantage of having low-level radioactive exhaust, even uiough this waste may
have a relatively short half-life depending on the choice of materials.

Problems in achieving the fusion goal

Apart from the political problem of obtaining enough money to continue the research, there are
several unresolved scientific and technical problems, of which some of the main ones are: (a)
achieving the conditions (temperatures, densities) as required for successful power station
operation. There has been a steady progress in this field and there is little doubt that this goal
can be reached; (b) suppressing those instabilities that terminate operation and damage the
device. Major progress has already been made in this fieid and it will probably be possible to
suppress or avoid all major instabilities successfully; (c) removing exhaust (He) from an
operating reactor. Under certain circumstances, helium tends to amass near the centre of the
reactor, thus choking the process. Several operating schemes have been suggested to deal with
this problem, amongst which the scheme with controlled central instabilities is perhaps most
promising because the plasma constituents are remixed regularly.

4 Chapter 1 - Introduction



1.4 This thesis

In a tokamak, the plasma is confined by means of a magnetic field. There exist an equilibrium
between outward forces due to the pressure gradient in the plasma and inward forces due to the
interaction between currents flowing inside the plasma and the magnetic field. The equilibrium
magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of
constant flux. The equilibrium yields values for global and local plasma parameters {e.g.
plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is
essential for plasma control, for the understanding of many phenomena occurring in the plasma
(in particular departures from the ideal equilibrium involving current filamentation on the flux
surfaces that lead to the formation of islands, i.. nested helical flux surfaces, Fig. 1.2), and for
the interpretation of many different types of measurements (e.g. the translation of line integrated
electron density measurements made by laser beams probing the plasma into a local electron
density on a flux surface).

The problem of determining the equilibrium magnetic field from external magnetic field
measurements has been studied extensively in literature. The problem is ‘'ill-posed’ which
means that the solution is unstable to small changes in the measurement data, and the solution
has to be constrained in order to stabilize it. Various techniques for handling this problem have
been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibriumn solution
in order to stabilize it. Most equilibrium solvers are not able to handle very dissimilar
measurement data which means that information on the equilibrium is lost. They generally do
not allow a straightforward error estimate of the obtained result to be made, and they require
large amounts of computing time. These problems are addressed in this thesis.

The investigations presented here can be divided into three parts: (1) determining the
magnetic field outside the plasma and determining the plasma boundary and some characteristic
plasma parameters; (2) determining the full equilibrium inside the plasma; and (3) studying
departures from the equilibrium known as MHD modes.

The first part is addressed using moment methods. Moment methods allow a systematic
treatment of the ill-posedness of the problem without introducing arbitrary restrictions of the
equilibrium solution. Exact relations between known sets of moments are found. The
methodology is successfully applied to the RTP tokamak, and the external magnetic field, the
plasma boundary and moments of the current distribution inside the plasma are determined from
magnetic field measurements.

th
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The second part, determining the full plasma equilibrium, is addressed by means of the
method of Function Parametrization (FP). FP is a technique to obtain the inverse of complex
mappings. Pioneering work on this method has been done by B.J. Braams. In this thesis, the
existing theory of FP is elaborated further and in detail. Advantages of FP are that it is quite
generally applicable; it can deal with large numbers of diverse measurement data to obtain a
consistent result; it provides error estimates of the obtained result, and differentiates between
systematic and random errors; and it is fast so that it can be used in on-line data analysis. It is
applied to the inversion of an existing forward computer mapping of plasma parameters onto
measurements, the HBT equilibrium code that was developed at Rijnhuizen by H. Goedbloed.
This inverse mapping is used to obtain the plasma equilibrium from magnetic data at RTP and
from polarimetry / interferometry data at TEXTOR.

Thirdly, the departure from the ideal equilibrium with nested toroidal flux surfaces
caused by helical MHD modes is studied. These instabilities arise because under certain
circumstances field lines for which the ratio of the number of toroidal turns to the number of
poloidal turns is rational can be easily displaced. Due to finite resistivity the field lines reconnect
so that the topology of nested toroidal flux surfaces is changed and nested helical flux surfaces
appear (Fig. 1.2). These 'islands’ affect radial heat transport profoundly, causing increased
heat loss from the plasma such that they are an obstacle in obtaining the high central
temperatures needed for fusion. Knowledge of the precise nature of these modes is essential in
improving the performance of tokamaks. The study of MHD modes presented in this thesis
leads both to a better understanding of the modes and their topology and to a re-evaluation of
the underlying equilibrium. Observation of MHD modes at JET during Pellet Enhanced
Performance (PEP) discharges leads to the discovery of a central region of negative shear with
improved confinement.

Chapter 2 serves as a general introduction to the subject matter of this thesis. The basic
MHD theory is treated and the plasma equilibrium equations are derived in a slightly
unconventional way. Also, the matter of turbulence and mode activity is addressed briefly. The
remainder of the work can be divided into three parts as outlined above, each of which is
presented in a separate chapter. Firstly, moment expansions are investigated in chapter 3. In
this chapter, the relationship between two sets of moments is established and they are applied to
the determination of the magnetic field and characteristics of the current distribution from
magnetic measurements at the Rijnhuizen Tokamak RTP. In chapter 4 more complete
information about the plasma equilibrium is obtained by means of Function Parametrization
(FP). The theory of FP is treated in detail. FP is applied to the determination of the plasma
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equilibrium at RTP and at the TEXTOR tokamak. Finally, magnetohydrodynamic (MHD) mode
activity is studied in chapter 5. Mode activity at RTP and at JET in PEP discharges is
investigated with a range of diagnostics. The measurement of the position of some modes leads
to a better determination of the safety factor (q) profile, which, in the case of the PEP

discharges, is found to be non-monotonic, with important consequences for local transport.

The appendix provides a list of symbols and their definitions.

Fig. 1.2a Schematic representation of an ideal MHD equilibrium with nested toroidal flux
surfaces in which helical magnetic field lines are embedded.

Fig. 1.2b The topology is altered by the appearance of islands, sets of nested helical flux

surfaces.
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1.5 Publications produced in the course of this work

Below a complete list of the publications that were produced in the course of the work
described in this thesis is given. The publications that are listed under Journals are reproduced
in this thesis (sections 3.2, 4.3, 4.2 and 5.5 respectively). Material from the conference
contribution Expansion of the flux and current density in toroidal systems and applications in
Jusion research, Venezia (1989) 1-459 is used in section 3.3.1.

Journals

B.Ph. VAN MILLIGEN, Exact relations between multipole moments of the flux and moments of
the toroidal current density in tokamaks, Nucl. Fusion 30 (1990) 157 (also IR 89/06)

B.Ph. VAN MILLIGEN, H. SoLTWIsCH, N.J. LoPEs CARDOZO, Application of Function
Parametrization to the analysis of polarimetry and interferometry data at TEXTOR, Nucl.
Fusion 31 (1991) 309

B.Ph. VAN MILLIGEN, N.J. LOPES CARDOZO, Function Parametrization: a fast inverse mapping
method, Accepted for publication in Comp. Phys. Comm. 1991
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M. WATKINS, W. ZWINGMANN, Shear reversal and MHD activity during Pellet Enhanced
Performance plasmas in JET, Submitted to Nucl. Fusion 1991

Conferences

B.Ph. VAN MILLIGEN, N.J. LOPES CARDOZO, Tokamak evenwicht bepaling d.m.v.
Juncrieparameterisering, Inventarisatie-conferentie over de plasma- en gasontladingsfysica
in Nederland, Lunteren, 21 en 22 maart '88

B. Ph. VAN MILLIGEN, N.J. LOPEs CARDOZO, Tokamak equilibrium determination through
Junction parametrization, in Contr. Fusion and Plasma Phys. (Proc. 15® Eur. Conf.
Dubrovnik, 1988), Vol. 12B, Part I, European Physical Society (1988) I-318

B.Ph. VAN MILLIGEN, Expansion of the flux and current density in toroidal systems and
applications in fusion research, in Contr. Fusion and Plasma Phys. (Proc. 16" Eur.
Conf. Venezia, 1989), Vol. 13B, Part I, European Physical Society (1989) I-459

B.Ph. VAN MILLIGEN, N.J. LOPES CARDOZO, Bepaling van de magnetische veldconfiguratie in de
Rijnhuizen Tokamak RTP, Tweedaags symposium plasma- en gasontladingsfysica,
Lunteren, 2 en 3 april 1990
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2. MagnetoHydroDynamics

2.1 Introduction

The equation that describes the toroidally symmetric plasma as a single-specics conducting fluid
is the well known Grad-Shafranov equation. It is the basis for a large part of the methodology
described in this thesis. Therefore its derivation from basic M2gactoHydroDynamic (MHD)
equations is described step by step, explicitly displaying the most important assumptions,
although in a somewhat unusual manner. The derivation is only ment as an introduction; more
rigourous treatment can be found in many textbooks. Some equations derived as intermediate
results are subject to less restraints or assumptions than the Grad-Shafranov equation and are
therefore important in research that looks to the plasma in more detail than is permitted by the
Grad-Shafranov equation, such as the study of the three-dimensional equilibrium or magnetic
turbulence. Sections 2.6 and 2.7 deal briefly with the breakdown of the ideal MHD equilibrium
due to turbulence and mode activity.

2.2 Coordinate systems

When studying tokamak devices such as described in Chapter 1, two obvious choices of
coordinate systems facilitate the description. Here, both systems are used alternately. In
addition, there is a less obvious choice of coordinate system (the so-called toroidal coordinates)
that is of use in a particular moment formalism that is introduced in Chapter 3.

Firstly, the familiar left-handed cylindrical coordinate system (R,Z,¢) is introduced. The
Z axis coincides with the major axis of the tokamak and the plane Z = () is the equatorial plane
of the device.

Secondly, a left-handed coordinate system, the polar coordinate system (p,0.9), is
introduced. It is in fact a simple plane polar coordinate system but with a third coordinate, ¢,
added. This coordinate system has a ring-shaped pole (R = Ry, Z = () that coincides with the
minor axis of the tokamak (the 'minor axis' is a meaningful quantity with circular cross-section
tokamaks only; in devices of other shape it is somewhat arbitrary). The relationship between the
cylindrical coordinate system and the polar coordinates is:

R=Ry+pcos@ (2.12)
Z=psin® (2.1b)

The toroidal coordinate ¢ is identical to the cylindrical coordinate ¢ (Fig. 2.1).
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[ S Fig. 2.1 A set of nested flux surfaces (not
to scale). The magnetic axis is shifted

outward by an amount A with respect to the
z ; plasma boundary. 'n this figure it is assuned
A Jor simplicity that the plasma boundary

position R, is the same as the tokamak
minor axis Ry, which is not generally true
(see Appendix). The relationship between
the cylindrical coordinate system (R.Z,¢)
J and the polar coordinate system (p.6,¢) can
also be seen. The polar coordinate surfaces
generally do not coincide with flux surfaces.

2.3 Representation of the magnetic field

2.3.1 The flux function
The magnetic field is divergence free, or equivalently:

VB=0 (2.2)

(Gauss' Law). One may therefore introduce a magnetic potential A and an arbitrary gauge field
G and write

B=Vx(A+VG) (2.3a)

satisfying Eq. (2.2) for all choices of A and G. A (or, equivalently, B) is expressed in flux
coordinates (p', 0', ¢'). These coordinates are only known after solution of the Grad-
Shafranov equation.

A=Ay Vp' +Ag VO + Ay VY (2.3b)

By choosing the arbitrary gauge field G such that VG = — A, Vo (where . =p', 8’ or ¢'),
one can transform away any one of the three components of A in Eq. (2.3b). In other words,
tae magnetic vector field can always represented by means of only two scalar fields due to the
restriction imposed by Eq. (2.2). Choose VG = — A, Vp', then Egs. (2.3a and b) can be
simplified by absorbing G:
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B=VxA (2.4a)
A=A VO +A, VY. (2.4b)

Combining Egs. (2.4a) and (2.4b) onc obtains

B=VAgx VO +VA,xVY. (2.52)
The two components of the vector potential Ag- and A, are renamed as vy, the toroidal flux,
and —y,,, the poloidal flux:

B =Vy, x VO' - Vy, x V¢, (2.5b)
Eq. (2.5) allows a fully three-dimensional description of the magnetic field.
2.3.2 Toroidal symmetry
Of more immediate interest is the introduction of toroidal symmetry. Because tokamck devices
are (to first order) symmetric with respect to rotation about the principal axis, one would expect
the magnetic field structure to reflect this symmetry (to first order). This implies that neither y,
nor ¥, depend on the coordinate ¢ and V¢’ = V¢. Therefore Vy, has only components in the
p- and O-directions, so:

Vy, x V@' = B, ey, (2.6)
where By(p,0) is the toroidal magnetic field. Thus Eq. (2.5b) becomes

B =By e, - x Vv, x €. Q@7

where Vp= \yp(p,e). Eq. (2.7) is the familiar tokamak physics representation of the magnetic
field. In the following the subscript p is omitted unless confusion might otherwise arise.
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2.4 The plasma model

2.4.1 The macroscopic description

The magnetic field equation (2.7) does not yet contain any plasma physics. One wishes to
describe the plasma as a fluid using the macroscopic quantities v (velocity), p (pressure) and p
(density) as state-identifying parameters. These quantities can be derived as velocity moments
of a set of distribution functions f;(x,v,t) for each particle species i (having mass m;), where x
is the position vector and t the time [Bitt-86, Frei-87]:

1 .
n; = jfl ddv, V= n; jvfi d’v, T; ='21‘I_::— I(V_Vi)zﬁ v
1
p =2 mp Yo 2minY; p=nT; (2.8a-1)
1 i i

Thus, the macroscopic description (v, p, p) is based on a microscopic description f;. A detailed
analysis would require conservation equations (mass continuity equation, charge continuity
equation, conservation of momentum and conservation of energy) for each species separately,
as well as Maxwell's equations and Ohm's Law. It must be noted that due to anisotropy caused
(mainly) by the strong magnetic field, the pressure is a tensor rather than a scalar quantity
Brag-65]. Viscosity, v, appears in the equations through the effect of particle collisions, which
are described in detail by collision operators. The situation becomes even more complex when it
is realized that particle drifts are important. Neoclassical theory accounts for the latter [Hint-76].
As will be clear from the above, a thorough treatment of a magnetized plasma can easily
become very cumbersome. In order to gain some insight into the global behaviour of the
plasma, one would rather use a simplified model that is more easy to handle. Effects that are
neglected by the simplification can then be added later. Such a gradual approach to a detailed
model leads to greater insight into the plasma properties. Even if one would not agree to this,
the available measurements do not allow a detailed determination of the velocity distribution
functions and computers cannot handle the full equations in simulations, and therefore the
details of the full model cannot be tested by experiment (as yet). Therefore, approximate models
(suffering the same degree of crudeness as the available measurements) are more appropriate.

2.4.2 The one-fluid description

The following paragraphs discuss the 1-fluid MHD equations. This set of equations assumes
that the motions of the various particle species can be summarized by a single vector field v as
in Eq. (2.8). Further, the equations do not contain the effects of heat conduction, they assume
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the pressure to be isotropic and they ignore the gravitational potential (which, however, can
easily be included in the Vp term). Finally, they assume that viscosity effects can be
summarized by a vszv term. This is a very crude simplification of the tensorial form of the
viscosity term V-I1 {Brag-65], which involves both B and v in order to account for pressure
anisotropy, but since it will only be used in order of magnitude estimates it is sufficiently
detailed.

The 1-fluid equations are:

%[:— =-VxE (2.9a)
i=Vx@®B/W (2.9b)
VB =0 (2.9¢)
V-eE)=¢ (2.94)
E+vxB=nj (2.9¢)
%g +Vpv) =0 .90
p%% +p(v-V)v==V(p) + jxB +oE + vszv (2.9g)

The equations (2.9a,b,c and d) are recognized as Maxwell's equations; Eq. (2.9¢) is Ohm's
Law; Eq. (2.9f) is the equation describing conservation of mass and Eq. (2.9g) is the equation
of motion. There are 15 variables: B, E (the electric field), j (the current density), v, p, p
(mass density) and ¢ (charge density) and 15 equations, so this set of equations is closed. Note
that 1} (the resistivity) and v (viscosity) are considered to be known parameters. Of course, like
v, 7| should really be treated as a tensor as well due to anisotropy. The magnetic permeability is
assumed constant throughout the plasma: 1 = p, as is the permittivity: € = g,

In order to make estimates of the magnitude of the various terms, the positive scalars x*
are introduced, giving the typical magnitude of the various variables x in the plasma. By
definition,

B =B*8, E =E*E, j=j*, v = v*V, p = p*, p = p*P, 6= 076 (2.10a)
where the 2 are dimensionless scalars or vectors. Likewise, define

t=t¢7, V = %19 (2.10b)
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This enables one to write the equations (2.9) in dimensionless form:

aﬁ—%—:-@xﬁ (2.11a)
ot
awni=VxB (2.11b)
vB=0 2.11c)
oy VB =5 (2.11d)
a4ﬁ+a1c'xﬁ=analazﬁ (2.11e)
al\
o, £+ ¢.pv)=0 @2.119)
A
00 3‘3—,‘: + 0, G-IV = -, VO +a, ) xB +a,off +a, V2V (2.11g)
t
where
: B*L* _ “'Oj*L* _ eoE* _ L*
a; = E** a, = B* ° a3 = G*L*’ Oy = v
M Mt pep* Mgo*BRLY povphv*
Tulr T g BT g BT ga N g

Note that o) = 1/Rey,,, where Rey, is the magnetic Reynolds number; o, = v*zlvi, where v, is
the Alfvén velocity; o, =21 B, where B is the local normalized pressure; and o, is related to the
more commonly used fluid Reynolds number Re = v¥L*/v by the relation a, = &t,/Re. There is
no commonly used parameter equivalent to 0.5, because usually quasi-neutrality is assumed
from the beginning (see section 2.4.3). Thus, the first result of this approach is that the
important parameters 8, Re, Re,, and others appear automatically when making the Egs. (2.9)
dimensionless.

In the Egs. (2.11), which are equivalent to Egs. (2.9), all variables are dimensionless
and of order unity if the x* are well-chosen (i.e. they are given realistic values). Strictly
speaking, this can only be true in a limited region of the plasma: e.g. it is to be expected that
some terms become vanishingly small or very large near the plasma boundary. Furthermore,
the meaning of L* and t* is somewhat ambiguous, because typical length and time scales may
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not be the same for all variables while typical length scales for one variable may not be the same
in all directions (anisotropy).

The 9 o;'s represent all possible independent dimensionless combinations of the 9
parameters x* of Eq. (2.10), pg, €9, 1 and v (13 parameters in all), because there are 4
independent physical dimensions involved (kg, m, s and C). The relative importance of the
terms appearing in these equations can be estimated from the dimensionless factors o,
provided the inner products and vector products do not make terms vanish. It is assumed that
they vanish locally only. In that case the Egs. (2.11a, b, d and f) demonstrate that o; = O(1)
(i=1,2,3,4). This is probably why simple dimensionality arguments so often prove to be
successful in plasma physics. Thus, only three of the typical magnitudes B¥*, E*, j*, v¥, 6%,
L* and t* are independent.

The terms on the left-hand side of Eq. (2.11e) are both O(1), which implies that the term
on the right-hand side either cancels or is also O(!). So clearly there are two distinct regimes:
o, << 1 (the ideally conducting plasma) or o, = O(1) (the resistive regime).

In the following, the conditions under which some terms can be neglected will be
discussed and quantified. Initially it is assumned ot = O(1), but the possibility of letting o, — 0
is left open.

2.4.3 The assumption of quasi-neutrality

In the quasi-neutral model it is assumed that the deviation from space charge neutrality is
negligible. This assumption is motivated by introducing the Debije shielding length Ap, that is a
measure for the Coulomb interaction radius in a plasma consisting of two fluids of ions and
electrons [Wess-87]:

A (eo're
hp= 2n¢’

where g is the vacuum permittivity, T, the electron temperature in eV, n, the electron density in
m~3 and ¢ the unit charge in C. Thus, for a plasma of T, = 10 keV and n, = 10" m™3,
Ap = 10~* m. In tokamak plasmas the plasma dimensions are much larger than Ay, (by 4 orders
of magnitude) and so the assumption of quasi-neutrality is reasonable. Under charge neutrality,
the inequality

0 << 1 21
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holds. Using o, = O(1) (i=1,2,3,4) it follows that

o* << B¥n E* << cB¥*, vk <<, t* >> L¥/c, L*>> a

HoC
where c is the light speed. None of these restrictions is strong, confirming the weakness of the
assumption. In particular, the restriction on 6* becomes very weak for small n. The

consequence of this assumption is that the o5 term in Eq. (2.11g) may be dropped.

2.4.4 The assumption of quasi-static flow

A second assumption that is often made is the assumption of quasi-static flow, which means
that the co-moving time derivative can be ignored in Eq. (2.11g), i.e. the first two terms are
negligible. This is achieved when

<< 1 (2.13)

%o

The implications of this assumption are easily found to be, again using a; = O(1) (i=1,2,3,4):

E*<<v,B*, v*<<v,, t* >>L*/fv,, L*>> 1
HovVa

B*

where v, is the Alfvén velocity, v, =
Vuop*

This defines the validity regime for the approximation (2.13). The constraints are a little
stronger than with (2.12). Again, the restraint on L* vanishes as 11 — 0, but the others remain.
If one takes B* = 1 T, n = 10 Qm and p* = 107 kg m™3 as typical values for a tokamak
plasma, v, = 107 my/s, so that these conditions are easily met for most phenomena of interest.

This description, however, ignores an important effect: the gyration of electrons and
ions around the magnetic field lines. The thermal velocity of 10 keV electrons is 6:107 mys,
violating the assumption. So the gyromotion is not described under this assumption, and the
description refers to guiding centre (i.c. the average position of a particle during one gyration)
motion only, and timescales longer than the inverse of the gyration frequency. In a plasma of
10 keV temperature and 1 T magnetic field, the gyration or Larmor radii of electrons (A,) and
ions (A; = ymym, A, if T; = T,) are A, = 3-10* m and A; = 102 m, approximately. Thus, the
smallest length scale that can be described is larger than A;.
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2.4.5 The assumprtion of low collisionality
A third assumption is the assumption of low collisionality, which should be motivated from a
study of the collision operator under given conditions. The assumption holds when

o, << 1 2.14)

The implications of this assumption are found to be:

n
Hova

E* << v B*s,,, V¥ << VpShy, t* >> v L¥/s,,, L*>> Isqv
Thus, the severity of this assumption depends on the dimensionless ratio s, = N/(KeVv) =
Re/Re,,. For the typical tokamak it can be shown that s,,, << 1 [Bate-80], so this assumption is
a lot stronger than (2.13). Taking some typical values as before, one finds sy, = 10713,
yielding L* >> 10° m. Now the electron mean free path can be estimated at 10* m, barely
satisfying this requirement. But obviously other length scales cannot meet this demand, and it is
clear that a realistic model should take account of the viscosity or collision term.

Summarizing the previous sections, it is found that 5 dimensionless parameters can be
used to distinguish plasma regimes in the one-fluid MHD description (note that the matter of
low- and high-beta regimes was not discussed). An effort was made to show explicitly what the
assumptions that are made in the derivation of the Ideal MHD Model mean in terms of
restrictions on typical parameters in order of increasing severity. Obviously, the estimates thus
obtained are quite crude because no account is taken of effects such as anisotropy.

2.4.6 The ideal MHD model

The ideal MHD model is derived from Egs. (2.9) under the assumptions of quasi-neutrality and
quasi-static flow, i.c. Eqs. (2.12) and (2.13) and o, << oi, (negligible centrifugal forces). In
the limits n — 0 (negligible resistivity) and v — 0 (collisionless regime, Eq. (2.14)) this set of
assumptions yields the common ideal MHD equations. In this limit the equations form a
consistent and closed set. The set of ideal MHD equations is

Vp=jxB (2.15a)
Mo =V xB (2.15b)
VB=0 (2.15¢)
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In order to impose toroidal symmetry, rewrite Eq. (2.7) as

1
B= RBq,Vq) “R Vy x € (2.16)
and insert it in Eq. (2.15b):
i = V(RBg) x Vo — e A%y, (2.172)
where
Jd1id 32
=R JRRIE* 322 (2.17b)

Two important observations can be made at this stage: from B-Vp = B-(j x B) = 0 it follows

that the pressure is constant on a magnetic surface (assuming, of course, that there are magnetic

surfaces; a magnetic surface is a two-dimensional subspace to which a particular fieid line is

tangent everywhere). In the toroidally symmetric case under study here magnetic surfaces can

be identified with the surfaces y = const. Thus the observation above implies p = p(¥).
Combining (2.15a) and (2. 17a) one finds

Qﬂvw -——-A*q! Vqr~—V(RB¢) 2.18)

implying that V(RBgy) = aVy, or F = RB, is a surface quantity F = F(y). From Eq. (2.17a) it
is clear that F is proportional to the poloidal current flowing on the flux surface. It must be
stressed that p = p(y) and F = F(y) are local relations that may not hold everywhere, ¢.g. on
surfaces with topologically disjunct parts such as occur with separatrices.

The familiar Grad-Shafranov equation [Grad-58, Shaf-58] now follows from Eq.
(2.18):

A*y = - R%p’' - FF 2.19)

where ' denotes d/dy. The Grad-Shafranov equation is an elliptic differential equation with two
source functions, p and F.
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2.5 Solving the ideal MHD equations

2.5.1 General considerations

The MHD equilibrium problem is to solve Eq. (2.19) with externally imposed boundary
conditions (i.e. measurements). Internal conditions such as continuity of B-n and of H x n (if
surface currents are absent) on all internal surfaces where n is the normal on the surface must
be satisfied in the solution region. Additional constraint equations are necessary to fix a unique
solution (geometrical constraints such as limiters must be taken into account, but, more
importantly, a restriction upon the class of profiles p(y) and F(y) must be imposed).

Much has been written on the subject [Shaf-58, Mukh-71, Zakh-73, Goed-84, Lao-85,
Frei-87, Blum-90] and this will not be reviewed here. However, it is attempted to shed some
light on the problem in general terms.

The MHD equilibrium problem is an inverse problem for Eq. (2.19): the solution should
provide a mapping of the discrete set of measurements represented by the vector q, which can
be expressed as functionals of the toroidal current density (or the two source functions p and
F), to the flux function y and characteristic parameters of the equilibrium, or equivalently the
current density.

Consider the simplified problem of finding a plasma equilibrium with fixed boundary
and total current. The free-boundary problem is not principally different but it would complicate
the discussion needlessly. Then, the problem can be visualized as finding the inverse mapping
of a projection; namely the projection of the current density in terms of an infinite class of
functions J in a Hilbert space R (defined on the interval 0 < y < 1, where y is a normalized flux
label that is O on the magnetic axis and 1 at the plasma-vacuum interface; see Fig. 2.1 for a
typical flux surface geometry) onto the finite set of measurements. Obviously, the inverse
mapping can only yield the projection of J onto a finite-dimensional subspace S of R whose
dimension is dictated by the number and accuracy of the measurements. The ‘true’ current
density also contains a component orthogonal to the subspace S that maps to zero (or rather to
components of the measurement vector q small compared to the measurement error €(q)) in
the measurement space, and which cannot be determined from the measurements.

It is clear, therefore, that one must restrict the solution a priori to a certain subspace § in
order to obtain a well-posed problem; if such a restriction is not made, the solution will be
unstable to small variations in the measurements. This may seem unsatisfying because it means
in practice that the solution of the equilibrium problem is dictated beforchand except for a few
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free parameters. Consider, however, the formulation of the determination of such free
parameters, which is expressed as a least squares problem minimizing R [cf. Luxo-82, Brus-
84, Fene-84, Blum-90] where

Nq

R=Y w; (g~ q)?

i=1
where N, is the number of measurements, q is an actual set of measurements, q' is a simulated
set of measurements and w; are weights. It is obvious that R will reach its deepest minimum for
that choice of subspace § that contains at least the total set of functions that does not map to
zero (or insignificance) on the space of measurements. Therefore, if more measurements are
added to an existing set, it may be necessary to extend the representation of the current density
to a larger class of functions. Nevertheless some arbitrariness in the representation of the
current density will always be present (namely part of it may lie in the subspace orthogonal to
S). It is interesting to note that the equilibrium problem bears some similarity to the problem of
finding a distribution (of e.g. current) from a set of (current) moments.

2.5.2 A conventional equilibrium solver method

The principal method of equilibrium determination is straightforward in principle, even though
it is complex in practice. Below, a global description of the typical procedure is given. More
comprehensive reviews are found in Refs. [Lack-76, Blum-90).

In general, the plasma state is represented by a finite set of parameters. The MHD model
provides a mapping of these parameters onto the measurements. The choice of parametric
representation of the plasma state is scmewhat arbitrary, but it is attempted to give a systematic
treatment of this subject here, as it will return in Chapter 4.

Some functional representation is chosen for the source functions p(y) and F(y) in Eq.
(2.19):

p(¥) = p(0)f(a,y), F(y) = F(0)g(b,y),

where a and b are the free parameters that are to be determined from the measurements, and f
and g are functionals giving the shape of p and F only. Generally, the functionals used are
sums of polynomials, preferably though not necessarily built from elements of a complete set.
In theory, a and b are infinite-dimensional vectors, but they are truncated at a suitable point.
There must be two additional parameters to give the amplitudes of both functions (i.c. p(0) and
F(0)). These are generally given implicitly by means of the parameters I, (the total plasma
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current) and [ (the normalized plasma pressure). For some purposes it is more convenient to
use O (the Shafranov shift) instead of B, which is equivalent.

The plasma boundary geometry must also be specified by a set of parameters. The way
in which this is done depends on the basic shape, which is dictated by the machine for which
computations are made. The location of the geometric centre of the plasma boundary
(Rgeo» Zgeo) along with the average minor radius ap,, (or equivalently the plasma volume) are
the basic geometry parameters. An infinite set of parameters describing deviations from a basic
shape (circular, D-shape or otherwise) is then e.g. given in terms of a Fourier expansion of this
deviation in the poloidal angle. Such a set of boundary shape parameters is denoted by the
vector ¢.

The free parameters p = {a, b, ¢, Ryes Zgeor dmins I, 8} are given some initial values,
and Eq. (2.19) is solved to find y(R,Z). The cost function R introduced above is evaluated, the
parameters p are adjusted and the computation is iterated until a suitable minimum of R has
been found. Note that this procedure is restricted to the computation of equilibria with nested
magnetic surfaces and a single magnetic axis.
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2.6 Analogy with fluid dynamics

So far this chapter has only considered ideal MHD equilibrium. The plasma, however, is
pervaded by waves and oscillations of many different types and by turbulence [Bate-80]. In this
section the analogy between the MHD equations and fluid equations is explored, and it is
shown why the study of fluid turbulence is relevant to the study of turbulence in plasmas.

2.6.1 Analogy between Ideal MHD and Fluid Dynamics
A perfect analogy exists between non-resistive ideal MHD theory and fluid dynamics. Compare
the vorticity equations for an ideal incompressible fluid with the ideal MHD equations (2.15):

Ideal MHD Ideal fluid
Vp=jxB (2.20a) ~V(plp +uv¥/2) =@ xu (2.21a)
i=VxB/ug) (2.20b) 0o=Vxu (2.21b)
VB =0 (2.20c) Vu=0 (2.21c)

The formal identity of these two sets of equations is obvious: replacing  (the vorticity) by
J» u by B/ and —(p/p + u?/2) by p/uy, Egs. (2.21) transform into (2.20). Shafranov has
successfully exploited this analogy to obtain some important results [Shaf-58].

2.6.2 Analogy between Resistive MHD and Viscous Fluid Dynamics
Often, however, one cannot neglect resistivity in the MHD description (as in the study of
turbulence) and one is forced to use the full MHD equations. Unfortunately, the perfect analogy
breaks down when additional terms such as resistivity and viscosity enter the equations.

To demonstrate this, the Maxwell Egs. (2.9a,b) and Ohms Law (2.9¢) are combined to
yield Eq. (2.22) (where p is assumed to be uniform and quasi-static such that V-v = 0):

Resistive MHD Viscous fluid
B_@vw+dve @z Rop- V(E) +VVy 2.23)
Ko p

Here % is the convective derivative % = %+ (v-V) (or the same with u instead of v in the fluid
equation). Eq. (2.23) is the Navier-Stokes equation for an incompressible fluid with uniform
density and viscosity, shown here for comparison [Batc-67]. F is an external force and v the
fluid viscosity.
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Both models display nonlinearities which are quadratic (as a consequence of the
convective derivatives and in Eq. (2.22) also the (B-V)v term) and essentially convective in
nature. Further, both models contain diffusive dissipation that acts primarily on small-scale
turbulence (since the V2 operator is large for small scale phenomena). From these
considerations, one may expect turbulence to show globally similar behaviour in both models.

First it is assumed that the force appearing in Eq. (2.23) is conservative, i.e. it can be
written F = V¢. Then, by taking the rotation of Eq. (2.23) one obtains:

Resistive MHD Viscous fluid

%%:Vx(va)+£;VzB (2.24) Qg—:Vx(uxw)+vV2(o (2.25)
Eq. (2.25) is know as the vorticity equation. The similarity of these equations is even more
striking. Note that the equation of motion was not used in the derivation of Eq. (2.24) and
therefore this relation is valid even in collisional plasmas. However, appealing though the
similarity may be there is a fundamental difference in the sense that no relation similar to
® =V xu (valid in fluid dynamics) exists in MHD between B and v. Thus, Eq. (2.24)
describes an essentially more complex system than Eq. (2.25).

In order to restore the fluid-MHD analogy, a non-conservative force F is introduced in
the Navier-Stokes equation (2.23). Thus

Resistive MHD Viscous fluid
%%:Vx (va)+£-OVZB (2.26) Q§_= Vxuuxo+F)+v Vie 2.27)

The external force F can be interpreted as being due to some external stirring of the fluid. The
equations, although still not identical, are now of comparable complexity. Thus one has the
interesting situation that the study of turbulence in externally stirred viscous fluids bears
relevance to MHD turbulence, and it may be possible to devise fluid turbulence experiments that
enhance our knowledge of MHD turbulence, provided that it is possible to obtain fluid
Reynolds numbers Re = u*L*/v of the same order of magnitude as the magnetic Reynolds
number Re,, = pov*L*M.

The model described above can be simplified in a tokamak situation, where the magnetic
field B has a dominant unvarying but inhomogeneous component By; in fluid flow, this would
correspond to a dominant vorticity £2,. Thus the analog of resistive turbulent flow in a section
of tokamak plasma is externally imposed turbulence in a rotating viscous fluid.
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2.7 MHD modes and stability

2.7.1 The safety factor

The magnetic tokamak equilibrium is characterized by nested toroidal flux surfaces. The helical
magnetic fieldlines lie on flux surfaces. A useful quantity is the safety factor, q(y), which is
equal to the number of toroidal transits a magnetic fieldline makes for each poloidal transit.
Therefore the safety factor is [Wess-87, Frei-87]:

1 (1B Fy) r 1
=— | 5 5-ds = —= | — ds 2.28
1 0m | R By 2n ijBe @28

where the integration is carried out over a single poloidal circuit along the flux surface. Higher
values of q provide greater stability against tearing modes.

2.7.2 Tearing modes

In general, the safety factor in tokamaks is a roughly parabolic function of the radius p,
increasing towards the plasma boundary. Typically, it is approximately 1 in the centre and
around 4 at the boundary. Thus, there are always flux surfaces where q is rational, i.e. ¢ = m/n
(m and n integer). A rational value of q means that after m toroidal and n poloidal turns a
magnetic fieldline on the flux surface connects with itself. On rational (or resonant) surfaces, a
small displacement of a fieldline is not smeared out over the whole flux surface, and can under
certain circumstances be enhanced: this is called a magnetic instability. In general, smaller
values of m and n imply stronger instability: e.g. (m,n) = (1,1) is associated with the violent
sawtooth instability (see Fig. 2.2 for a plot of fieldlines with (m,n) = (1,1) symmetry).

Due to finite resistivity the displaced field lines can reconnect (tearing mode), changing
the topology of the magnetic flux function, which now no longer consists of simple nested flux
surfaces (Fig. 2.3) [Bate-80, Wess-78, Wess-87]. The magnetic islands that are thus created
are helical structures with nested flux surfaces and a magnetic axis. Fig. 2.4 shows the result of
a resistive field line computation (Poincaré map) [Bick-87], showing the island structure in a
poloidal cross-section and the toroidal effect which results in a different island size on the inside
and outside of the cross-section. The helical island structures rotate mainly in the toroidal
direction because poloidal rotation requires energy to compress and expand them. These
structures can sometimes cause 2 disruption, especially if they lock to external magnetic stray
fields.
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Fig. 2.2 Field lines on a q = 1 surface.

One field line is highlighted for clarity.

The existence of islands is of
importance for confinement and heat
transport. The high mobility of particles
along the field lines leads to homogeneous
temperatures along the nested surfaces
within the islands, such that the temperature
profile is 'short-circuited’ over the radial
extent of the island. Further, the existence of
a stochastic layer around the island
separatrix is expected to increase radial
transport through the 'X-points' of the
islands. Finally, island chains on separate
rational surfaces may overlap, creating a

N
\ A
\\
\
L B Y T B Y

Fig.2.3 Section of a few flux surfaces
around a rational surface (dashed line). The
field at the rational surface has been
subtracted from the toial field, and thus the
field lines reverse direction from one side of
the rational surface to the other. The upper
figure shows the situation before
reconnection, the lower after reconnection
[Wess-87]. Note the change in topology: the
lower figure shows several sets of nested
flux surfaces (islands) within the pre-
existing set of nested flux surfaces. This
process may repeat itself to quite small scale
(secondary and tertiary islands), thus
creating a chaotic field structure.

stochastic area between these surfaces with strong radial diffusion [Rebu-86b].
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Fig. 24  Field line mapping or Poincaré plot of magnetic field lines in a poloidal cross-
section [Bick-87]. Starting from an ideal equilibrium with nested flux surfaces, the field lines
are perturbed and islands appear (left-hand figure). If the perturbation amplitude is increased,
the islands grow and when the islands on neighbouring flux surfaces begin to overlap, ergodic
or random patters emerge (right-hand figure).
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3. Multipole and current moments

3.1 Introduction

The basic MHD equilibrium problem has been defined in the previous chapter: the
determination of the magnetic equilibrium inside the plasma, using magnetic probes that are
located outside the plasma. The problem can be divided into two parts: 1) solving the
homogeneous Grad-Shafranov (GS) or Laplace equation in the vacuum region surrounding the
plasma and determining the plasma boundary such that the solution matches the measurements,
and 2) solving the complete GS equation in the plasma region, such that the solution matches
the solution to 1) at the plasma boundary [Brus-84]. Already the first and easiest part of the
problem is ill-posed in the sense that small variations in the boundary data may cause large
changes in the solution some distance away. The reason for this is that poloidal variations of the
plasma current that behave as cos(m@), where 0 is the poloidal angle, give rise to magnetic
fields that fall off as p'("'”) towards the outside, where p is the radial coordinate. Thus details
of the current distribution with high poloidal mode numbers m can be drowned in the signal
generated by the lower m's. Conversely, high m details that are measured need to be
extrapolated inwards if they are to be translated in a current distribution, and thus blow up
strongly: clearly an unstable procedure and very sensitive to measuring errors. A systematic
way of treating the ill-posedness is expanding the flux function in a set of harmonic functions,
and taking only a finite number of terms into account: such an approach is called a moments
method [Zakh-73, Woot-79, Lao-81, Lee-81, Lao-84, Hakk-87].

Section 3.2 is a reprint of the letter Exact relations between multipole moments of the
flux and moments of the toroidal current density in tokamaks [Mill-90a). In it, two sets of
moments are introduced: current moments and multipole moments. Section 3.3 shows how the
current moments can be used to reconstruct the current profile, and a suggestion for definitions
of characteristic current distribution parameters is made. Section 3.4 discusses how the
multipole moments are applied at RTP in order to reconstruct the vacuum field, and the
accuracy of the determination of the multipole and current moments at RTP is studied. In
section 3.5 the relative merits of the two sets of moments are discussed.
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3.2 Exact relations between multipole moments of the flux and moments of
the toroidal current density in tokamaks

B.Ph. vaN MILLIGEN

3.2.1 Absrmract

In tokamak fusion research, expansions of the flux in solutions to the homogencous Grad-
Shafranov equation (multipole moments method) have been shown to provide a good
description of the flux outside the plasma. In practice, moments of the toroidal current
distribution are more often used, because they relate directly to meaningful global plasma
parameters. The letter presents a method by which exact relationships between the multipole
and the current moments can be obtained. Results for some important special cases are
presented.
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3.2.2 Introduction

An important topic in tokamak fusion research is the determination of the magnetic equilibrium
inside the plasma, using magnetic probes that are located outside the plasma. The problem can
be divided into two parts: (1) solving the homogeneous Grad-Shafranov (GS) or Laplace
equation in the vacuum region surrounding the plasma and determining the plasma boundary,
and (2) solving the complete GS equation in the plasma region such that the solution maiches
the solution to (1) at the plasma boundary [Brus-84]. These problems are ill posed: small
variations in the boundary data may cause large changes in the solution some distance away.
The ill-posedness can be overcome by expanding the flux function in a set of solutions to the
hormogeneous GS equation and taking only a finite number of terms into account. To solve
problem (2), the current distribution must generally be restricted to some physically relevant
class.

If, in the vacuum region outside the plasma, the flux function is expanded in a complete
set of solutions to the homogeneous GS equation, obtained by separation in toroidal
coordinates, the expansion coefficients are called multipole moments. Such moments have been
shown to provide a good description of the flux outside the plasma [Alla-86). The moments
method can also be applied to the problem of computing the measured fields and fluxes from a
specified equilitrium. A drawback of the method is the absence of simple relationships between
these moments and physically more meaningful global plasma parameters.

Current moments, on the other hand, are widely used to obtain such global plasma
parameters as the total current and the position of the current centre [Zakh-73]. Since these
moments can be easily computed from the magnetic signals, they are often used as plasma
control parameters.

This letter presents the relationships between these current moments, i.e. moments of
the current density with respect to polynomials in Cartesian coordinates, and the multipole
moments, i.c. moments of the flux function with respect to eigenfunctions of the GS equation
in toroidal coordinates.

In section 3.2.3 the notation used in this letter is introduced and a definition of the
multipole mosnents is given. In section 3.2.4 exact relationships between current moments and
multipole moments are derived.
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3.2.3 Toroidal coordinates and multipole moments
The poloidal flux function y obeys the GS equation:

A*y = -2mugRjy inside the plasma

Ay =0 outside the plasma 3.1
where A*y = RZV(R2Vyy) and j, is the toroidal current density.

Toroidal coordinates are defined by means of the following relationships with the usual
cylindrical coordinates (R, Z, ¢) [Alla-86; Mors-53]:

R, sinh {
" cosh £—cosn

R, sin n

" cosh -cosn 3-2)
where R, is the pole of the coordinate system. Surfaces of constant § are tori with major radii
Rg =R /tanh { and minor radii a; =R /sinh {. AtR =R, { = co, while at infinity and at R =
0, { = 0. The coordinate 1) is a poloidal angle and runs from O to 2x. These coordinates are
particularly suited to toroidal systems.

A complete set of solutions to the homogencous GS equation A*y = 0 is provided
through the half integer Legendre functions [Fock-32; Mors-53; Abra-65]:

L 1
Vi = sinh{ P, ;(cosh{) COS(mTI)' (3.3a)
w/coshc - cosT
. 1
Yo = - SihG Qu 1p{coshl) cos(enm) (3.3b)

ﬁcoshc - cosn ,

V= sinh{ Pp, 1 (cosht) sin(am)

" \l cosh{ — cosn |
v e sinh{, Qg ;,(coshl) sin(om) 330
" chhc - cosn

The normalization of the Legendre functions is the one adopted by [Abra-65]. It is possible to
expand the flux function W at any position in space in the toroidal harmonics (3.3):

(3.3¢)
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GRS Z UM+ MESEE + MESES & My }. (3.4)
The expansion coefficients M:.',c nd Mmcls are called the internal and external multipole
moments, respectively. It has been shown that the expansion coefficients can be obtained from
the magnetic measurements by a Fourier analysis of signals with respect 10 the angle | [Alla-
86].

3.2.4 Expression of current moments in terms of multipole moments
The multipole moments are useful as a means to represent the flux function outside the plasma,
but are hard to intespret physically. Polynomial current moments, on the other hand, are more
open to meaningful interpretation [Zakh-73]. In this section, the relationship between the
multipole moments and the current moments is established.

Green's second identity in toroidal geomeiry siates that for two scatar funciions ¢{R,Z)
and y(R,Z), the following equality holds:

1 1 oY oy
— (wA*r-xA*w )dS = | — [ w2 _ ¥ g5 . 3.5
IR(vxxv) Il(va xan)s (3.5)
[¢] o

Using A*y = —2mugRj, (2.1) and taking X to be a solution to the homogencous GS equation,
A*yx =0, one finds

o _, 0
I’”‘ds"zuo f ( )ds. (3.6)

This can be rewritten in toroidal coordinates:
2x

. (coshz; cosn) (L Ox ¥ 3.7
9= IXJOdS ZIlloRp inh{] (v3§ daf )dﬂ o

With Eq. (3.7) any moment g, (subject to A*x = 0) of the current distribution j, can be
computed in terms of a line integral of the flux and poloidal field over a {-surface enclosing the
plasma column. Equations (3.3) and (3.4) can be used to obtain expressions for the expansion
in toroidal multipole moments of both y and dy/a{, and these expressions can be substituted
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into Eq. (3.7). The resulting expression can be simplified by observing that A*y = 0, so that )
can be expanded in the complete set of toroidal harmonics (3.3). Writing

x= 2 { v v anvir}, G8)
m=0
the integration over 1 in (3.7) yields an expression for the current moment in terms of a,, M,
P:,_l 2 Q:,_l 2 P,ln,l /2 and Q:n_m. This expression can be simplified further by noting that

Py, 1;2(coshl) Q) 12(coshl) — P2, 1 pp(coshl) Q. 12(coshl) = (sinh) ™, (3.9)
such that the Legendre functions drop out. This yields

where Bij is the Kronecker delta, and the a:n/‘ are constants which only depend on the choice of
x and are determined through Eq. (3.8).

Equations (3.8) and (3.10) are prescriptions by which expressions for the current
moments g, in terms of the multipole moments can be obtained. Note that the only restriction
on Y is that it is a solution to the homogeneous GS equation. Thus it is possible to choose
such that the resulting current moments correspond to the usual polynomial current moments
introduced in [Zakh-73] and often used in tokamak research. Some other families of solutions
to the homogeneous GS equation are given in [Braa-86a)]. Every y in such a family may be
expressed in toroidal coordinates by Eq. (3.2), and subsequently expanded in the manner of
Eq. (3.8).

The summation rule

Vcoshl - cosn = ’%‘f; (2-80) (m*~ 1™ Qp 1(cosh) cosem)  (3.11)

provides the basis for derivation of many other summation rules that serve to find the expansion
of functions ) in toroidal harmonics. Interesting expressions in this respect are of the form
X Apsinhl QL 1 x(coshl)cos(mm) or X A, sinh{ Q.1 x(coshl)sin(mm). Defining two
differential operators:

D,,!%, Dy=sinh{ = —— =, (3.12)
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and using (3.9), it is very easy to prove that
Dy [sinh{ Q;,.1(coshl)] = (m’~ 1) [sinh¢ Q1 p(coshO)]. (3.13)

Obviously, D, and Dg commute. These two operators can be applied a number of times in
succession to Eq. (3.11). This results in right-hand sides of the form required, i.e. a
summation related to an expansion in the complete set of solutions to the homoegeneous GS
equation (3.3). Likewise, the left-hand sides are related to the expression in toroidal coordinates
of the polynomials defining the current moments (Table 3.1 and Eq. 3.2). Thus one has a
straightforward, though tedious, method of obtaining the expansions of Eq. (3.8).

A particularly useful set of polynomials ¥, generating current moments is given by

Xo=1,
X1=2,
Lz
=R e /T e @19

where |.] denotes rounding to the nearest smaller integer. These polynomials satisfy A¥*y, = 0.

Expressions of current moments g, generated by the polynomials , of eq. (3.14) in
terms of the multipole moments were derived for the first few values of n (see Table 3.1). The
result for ¢ = 1 is in accordance with that given in [Desh-83). The results for other choices of )
have not been published before.
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Table 3.1: Expression of current moments in terms of the multipole moments

X=%o=1: (total current)
0 . \2 ic
g=1= [(,) as=- M.,
x IP 3 L 27“10Rp ; m
X=XN1=Z (upward displacement of current centre)

1_ = : _‘_[_2_00 i.s
qx-zwl,,—ﬂf(zjq,)dS—mmzomMm

X=%X2= R”: (outward displacement of current centre)

2.2 2. 2VIR, ¥ 2 i,
qx=RmIpEJ(R je ) dS = - Z(m ~D M
0 u'o m=0
X=X3= R’Z: (skew ellipticity of current distribution)

4\’5 23 1,8
= I( RZZj,)dS=———REZm (m’>-3 M},

0 31"'0 m=0
X=Xa= R’Z’ - % R*: (vertical ellipticity of current distribution)

2V7R} - .
I( ®R’Z2IRYj, ) as =- ;fok Zo (m*+3) (m’-} M},
m=!

A=XAs= R’Z’ - % R*z: (upward triangularity of current distribution)

4
4 2 i.s
= I( R’Z’3R"z) j,)ds=—ﬂ-ﬂz m*+LY (m®>-H My,
0 15“"’0 m=0

X=X6= RZ*-2 R y +3 1S, (outward triangularity of current distribution)

42 .
@ = j( R*Z*-2R'Z2 4R j, ) —5’-2( L+l (m?-d) My
2

Chapter 3 - Multipole and current moments




3.2.5 Acknowledgements
The author would like to express his gratitude to Dr. N.J. Lopes Cardozo for many inspiring
discussions and careful reading of the early versions of this letter. In preparation for this final
version, the criticism by Dr. B.J. Braams has been invaluable.

This work was performed under the Euratom-FOM Association agreement with
financial support from NWO and Euratom.

Chapter 3 - Multipole and current moments 37



3.3 Interpretation of the current moments

3.3.1 Approximation of the current density profile from the current momenis
Having obtained the current tnoments, the information present in these moments can be used to
reconstruct the current profile, provided a choice for the radial distribution of the current profile
is made, since the moments only contain information on the total current flowing and its
poloidal distribution. This section presents a way to perform such a reconstruction.

The inner product (Xisz)w is defined by (xi,xj)w = ijixj dS where w = w(R,Z) is a
weight function, and the ¥; are the generating functions for the current moments that have been

introduced in the previous section. The integration is over the R-Z plane. The corresponding

norm is given by lix;ll, = (xl,x,):,lz.

By means of the Gram-Schmidt procedure [Mors-53] the functions ); are
orthonormalized with respect to the inner product (X;,X;)w- This yields a set of functions &
satisfying A*E; = 0 and (§;.8)y, = ;.

By analogy with (3.10), current moments q§ = j{:" jo dS = (&, _]¢)w are defined.
Then

j;,,=zq'§z;i w (3.15)
i=0

is the best approximation to j,, in the space spanned by {&;w}. Note that this expansion is not
necessarily a solution to the GS equation because it is not of the form j, = R‘lfl(\v) +RA(Y).

The expansion (3.15) should converge quickly, so the zeroth-order approximation 1o jg,
_]¢, should in some sense be close to a realistic current profile. Note that from (3.15) follows _]g
= qgw, so that this demand is in fact a restriction on the shape of w. Also, w must be such that
it produces a well-behaved inner product, or, in other words, w must be a function of rapid
decay (i.e. fall off more rapidly than the inverse of any polynomial in R and Z), such that
(Li-X)w is integrable for all {);,X;}. These two considerations lead to the choice of a Gaussian

for w:

o 22 2
exp[ (R w) _(Z- Zw)] (3.16)

21toRoZ
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Fig. 3.1 Orthonormal functions §&;
weighted with w (Ry = 0.72 m, 6y = 0.1
m). The toroidal current density may be
expanded in these functions, while the
expansion coefficients can be obtained in a
Jast way from the magnetic measurements.
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The normalization of w is such that i1l = 1. R,,, Z,,, o and 07 can still be chosen. R,,, Z,,
will typically correspond to the centre of a current distribution, while 6 and 67 correspond to
its width.

The orthonormalization of the set Y; in Eq. (3.14) with respect to the inner product
defined above yields a set of &;. The functions E,w (i = 0,...,6) are displayed in Fig. 3.1 (for
simplicity, Z,,=0, og = 67 = G,, was taken).

In general, the expansion (3.15) is truncated at some low mode number. It is important
to observe that the ¥; do not form a complete set. Nevertheless the total current, current weight
centre, etc. can still be produced accurately.

When applying this method in practice, the approximation (3.15) can be optimized by
choosing an optimal R, to fit a particular measurement. This is achieved by setting
R, = [g}/a;]'"” (see Table 3.1).

3.3.2 Definition of characteristic parameters from the current moments

The relation between the current moments and the spatial distribution of current has been
elucidated in the previous section. It is clear that it must also be possible to obtain values for the
position of the current weight centre, the current distribution ellipticity etc. from the current
moments. Below, a way of defining these quantities is suggested.

Moment Definition Interpretation (unit)
0 IL=q Total current (A)
1 Z=91/9 Vertical displacement of current centre (m)
2 cur =92/ Horizontal displacement of curr. centre (m)
3 g= qlo (q3 qlqz) Skew ellipticity of current distribution (m)
. 1 q lqz 163
= q— qs— 4‘10 Vertical ellipticity of current distr. (m )
5 = ql— (q 5— 1 1(12 iq:fqz Upward triangularity of current distr. (m°)
0
6 =

0

L( 4142 342‘12 143
P 46 —

4 24(3)‘8(1(2)

) Outward triangularity of current distr. (m®)
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The definitions of the moments 0, 1 and 2 are trivially obtained from Table 3.1. The definitions
of the higher-order moments are such that they do not depend the total current or on the location
of the current centre.

3.4 Application to RTP

3.4.1 Determination of multipole moments from the measurements

The multipole moments can be computed from volume integrals over the current distribution
inside (internal moments) and outside (external moments) some control surface { = {; [Alla-
86]. If this control surface intersects a region with non-zero current, then the moments are
dependent on {;. However, if this control surface is chosen such that it lies completely within a
currentless region and the only current flowing inside the control surface is the plasma current,
then the moments are independent of the control surface and the internal moments correspond to
the plasma current and the external moments correspond to external coil currents. Of course the
expansion of y is only valid in the currentless region, or, more precisely, in the section of
space between two { = constant surfaces (a toroidally annular region) where the current density
is identically zero [Brus-84].

If the control surface { = {j can be chosen to coincide with a set of magnetic pick-up
coils, then the determination of the moments (internal and external) from such measurements
becomes particularly straightforward. It has been shown that the expansion coefficients can be
obtained from the magnetic measurements by a Fourier analysis of signals with respect to the
angle n [Alla-86].

However, at RTP the radial and poloidal components of the magnetic field are not
measured at the same minor radius (p = const.) surface. Therefore the moments are determined
by making a fit of the radial and poloidal magnetic field measurements to the relevant
expressions in terms of the moments with the moments as regression variables:

Mnax .
= 3 MISE£m,0) + My £5m,0) + M £5m,0) + M3 £ .0
m=0
Mn

BC— 2 Ml . gx.c(,n’c) + M:: l.s(.n o +Me.c e,c (,n C) + Me.s g (,n’c)
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where the f and g are known functions that can be found from Eq. (3.4) by taking the
appropriate derivatives. The value of M,,,, is found from the requirement that the regression
must be overdetermined. If N,, is the number of poloidal field measurements and Ny the
number of radial field measurements, then

N, +N+2
Moo = min (M, it (—L———)),

where M, is some preset maximum. A sensible choice for Mo, can be made by studying the
effect of measurement errors on the determination of the moments. This is discussed in the next

section.

3.4.2 Sensitivity to measurement errors of multipole and current moments

The multipole expansion provides an accurate description of the flux outside the plasma, but the
convergence of the expansion of the intenal flux near the pole of the coordinate system (i.e.
near the centre of the torus) depends strongly on the location of this pole. Therefore the
reconstruction of the internal flux near the pole generally requires a high number of moments,
and if the expansion is truncated at a low mode number the reconstruction will be bad, even
though it is good further away from the pole. Note, however, that the pole generally lies within
the plasma, such that the reconstruction is not valid in that region anyway. The reconstruction
of the external ficlds is less sensitive to the location of the pole.

The current momaents are computed from the internal multipole moments and describe
the amplitude, location and shape of the current distnbution (section 3.3). Their value likewise
does not depend on the choice of pole and provides a reliable source of information on the total
current and the poloidal distribution of the current density.

In this section, an error analysis is carried out for the determination of these moments in
the specific geometry of the Rijnhuizen Tokamak Petula (RTP). RTP has a circular cross-
section, around which measuring coils and flux loops are positioned (Fig 3.2).

Once a choice for the coordinate system is made, three sources of errors can be
distinguished: (1) systematic errors due to ¢.g. misalignments of coils or calibration errors, (2)
measurement noise and (3) computational inaccuracies in determining the moments using either
a Fourier analysis or a regression method as described in the previous section.

It has been shown [Alla-86] that for an aspect ratio of 3.16 (which is close to the RTP
aspect ratio R/a = 3.38) and measurement errors of 1%, it is very difficult if not impossible to
determine any but the first four multipole moments.
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1 circular limiter
2 ECE polychromator
3 top-bottom limiter
4 heterodyne ECE
S5 magnetic pick-up coils
6 neutral particle analyzer
7 transmitted power measurement
8 ECRH
9 soft X-ray pulse height analyses
10 X-ray tomography
11 visible light tomography
12 muki-channel
interferometer/polarimeter
13 2 mm interferometer
14 Hux loops
15 hard X-ray monitor
16 Thomson scattering
17 visible light spectroscopy

17

Fig. 3.2 Schematic of RTP (top view) displaying the toroidal location of the main
diagnostics.

The combined effects of the errors (2) and (3) on the determination of the moments have
been investigated for the case of RTP. Wire model simulations of the plasma and full
equilibrium simulations were used. Below the results of both computational analyses are
presented.

In the wire model, the plasma current distribution is simulated by means of a finite set of
current-carrying toroidal wires. Four wires were positioned in the centre of the tokamak to
simulate the plasma, and four wires at the locations of the external coil groups of RTP to
simulate the external currents. The currents through these wires and also the positions of the
plasma-simulating wires were varied, and the corresponding magnetic ficlds and fluxes in
measuring coils and flux loops around the torus were computed. The generated current
moments had, for the low orders that were studied, a greater range of variation than are
expected in reality. Subsequently, the multipole moments were desermined both directly from
the known current distribution (cf. [Alla-86]) and by the method described in this article from
the measured fluxes and poloidal magnetic fields.
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Fig. 3.3  Reproduction error of moments Fig. 34  Reproduction error of moments
as determined using a wire model. The as determined using a full equilibrium model
vertical axis is the spread, €, of the and function parametrization. This figure
moments, recalculated from simulated should be compared to Fig. 3.3.

magnetic measurements, divided by their

range of variation over the simulations, R

(see text). The horizonzal axis is the momens

index.

Fig. 3.3 shows the quantity /R for intcrnal and external multipole moments and current
moments. The reconstruction error, &, is the standard deviation of the difference between the
known moment and the moment as computed from measurements perturbed with 3 % random
noise, as found from a large number of calculations using different wire potitions and currents.
The range, R, is the range of variation of each moment. The current moments labeled as
0,1,2,3 arc to be identified with the moments 0,2,4,6 defined in the previous section; since an
up-down symmetric case is studied the odd current moments are all 0. The graph indicates that
(1) the accuracy of thc moment desermination decreases strongly with increasing m; (2) the
determination of the external moments is less accurase than that of the inernal moments, and
both types of multipole moments are desermined less accurately than the current moments.

It should be nosed, however, that the range of variation of the moments may not reflect a
range as occurting in a real experiment. Therefore a similar study was done using Function
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Fig.35a Figure displaying the RTP vacuwn vessel (solid line), circular limiter (dashed line),
top- and bostom limiters (shaded polygons), and pick-up coils (small circles) in a poloidal
cross-section. From the magnetir measurements (indicated by the flags departing from the pick-
up coils, flux loop measuremems nos shown), the insernal and exsernal moments are determined
as explained in the texs, and the tosal poloidal flux outside the plasma is reconstructed. The last
flux surface touching any of the limiters is determined, and this is taken to be the plasma

boundary.

Parametrization (sce next chapier) using a realistic plasma equilibrium code. The results are
presented in Fig. 3.4. RTP plasmas were simulated and the corresponding measurements
computed. The measurements were perturbed with 3% random noise and the moments were
recomputed. The graph shows &/0, where ¢ is defined as above while o is the standard
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Fig. 3.5b Figure displaying the comribution of the external field 1o the sotal poloidal flux. The
moments expansion makes it possible to distinguish between internal (plasma) and external
(field coils) contribusions. The flags on the pick-up coils show the sirength and direction of this
external field constribution, however not on the same scale as in Fig. 3.5a.

deviation of the moments, versus m. Due 10 the fact that a realistic plasma model is used, the
distribv “‘on of poloidal harmosics ia the flux function is different, and the reconstruction does
not deteriorate 30 dramatically with m as in Fig. 3.3. Remarkably, the current moments are
desermined with an accuracy better thas 5% for m S 3. The fact that both here and in the
previous figure the exicrnal moments are more inaccurate than the other moments is due 10 the
fact that the external expansion contribwes less to the total flux at the measurement coil
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Fig. 3.5¢c Contours of the strength of the external magnetic field displayed in Fig. 3.5b. The
field flags are the same as in Fig. 3.5b.

3.4.3 Reconstruction of the mognesic ficld ot RTP

A program has been writiea 10 desermine the multipole moments st RTP using the method
described in section 3.4.1. These moments were subsequently used 10 reconstruct the flux and
the magnetic ficld outside the plasma, and the exsernal part of the flux and the field in the whole
region within a soroidal coordiaste swrface { = const within the external field coils. The position
and shape of the last flux surface touching the limiser was also compwied. Strictly speaking, the
expansion is only valid outside the lasgest coordinate surface { = const thet souches the piasma,
but since the plasma is neasrly circular the expansion was continued inward to the plasma
surface. Due to a sensible choice of the poie R,, the error made in the flux desermination near
the plasma boundary is small.
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Fig. 3.5a shows flux contours outside the plasma for a typical RTP discharge, and the
plasma boundary. Fig. 3.5b shows the contribution of the external flux to the total field at the
same moment. Fig. 3.5c shows contours of the absolute value of the external poloidal magnetic
field.

3.5 Discussion
In the previous sections the multipole and current moments were studied. In the following the
relative merits of these two systems of expansion are discussed.

The current moments contain less information than the multipole moments (internal and
external). Firstly, because they can be computed from poloidal field measurements only; and
seccondly because the current moments can be expressed as infinite sums of the internal
moments, as was demonstrated. It follows that the current moments are independent of external
currents. A great advantage is the independence of the current moments of the choice of
coordinate system. The internal multipole moment expansion, on the other hand, may require
many harmonics for an accurate description of the flux function if the pole is badly chosen,
even if the information contained in them is identical to that contained in the current moments.

Both systems of moments provide information on the poloidal distribution of current,
but not on the radial distribution. Note that this is typical of the MHD plasma equilibrium
problem: in the absence of radial information from other diagnostics than magnetic
measurcments, all equilibrium solvers have to restrict the class of possible solutions in the
plasma by assuming some radial profile shapes. Due to the toroidal effect and cllipticity of the
plasma it is sometimes possible 10 extract some information on the radial distribution of current,
but RTP, being circular, is a typical case where this is extremely difficult.

The multipole moments, unlike the current moments, provide information on the total
flux and ficld outside the plasme and inside the external conductors. Thus it is possible to make
a link with a Grad-Shafranov solver at the plasma boundary, providing a way to solve the basic
MHD equilibrium problem mentioned at the beginning of this chapser.
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4. Function parametrization

4.1 Introduction

This chapter is devoted to the method of Function Parametrization (FP) and its applications to
several tokamaks. Section 4.2 is a reproduction of the paper Function Parametrization: a fast
inverse mapping method [Mill-91b] in which a mathematical description of the method is given
and the application of the method to the Rijnhuizen tokamak RTP is discussed. Section 4.3 is a
reproduction of the paper Application of Function Parametrization to the analysis of polarimetry
and interferometry data at TEXTOR [Mill-91a].
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4.2 Function Parametrization: a fast inverse mapping method

B.Ph. vaNn MILLIGEN, N.J. LopES CARDOZO

4.2.1 Abstract
Function Parametrization (FP) is a method to invert computer models that map physical
parameters describing the state of a physical system onto measurements. It finds a mapping of
the measurements onto the physical parameters that requires little computing time to evaluate.
The major advantages of FP over other analysis methods are: it is quite general; it is fast,
allowing real-time control of experiments; it allows a thorough error analysis; it can proviae
insight into the structure of the computer program used to model the experiment; it can be used
to analyze sets of dissimilar measurements; it can be used to study the adequacy of certain new
measurements for determination of specific physical parameters.

FP is tested on the reconstruction of plasma equilibria from magnetic measurements. As
a result, some important parameters describing the plasma state are shown to be recoverable in a
fast and reliable manner.
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4.2.2 Introduction

In many experimental situations, the physicist is faced with the problem of interpreting a set of
measurements which are implicitly related to the physical parameters of the system under study.
In many cases, a model is available that allows explicit simulation of measurements given the
physical state of the experiment: the model is a mapping of physical parameters onto
measurements. The problem of data interpretation is to find the inverse of the mapping.

However, if the model is complex, this inverse mapping may be hard or impossible to
find, or it may not even exist. If a computer model of the experiment is available, the
experimenter involved in the interpretation of a set of measurements is then forced to run the
model many times, each time adjusting the physical parameters until suitable agreement with his
measurements is obtained. If the number of experiments to be done is large, then this iterative
solution may become very time-consuming to the point of hindering further advances of the
research.

Function Parametrization (FP) is the name for a collection of techniques that tackle the
problem of finding an inverse mapping of a computer model systematically. An important
ingredient is the reduction of dimensionality of the measuring space such that redundant
information is rejected. This procedure must be carried out with great care in order not to
discard significant data. The inverse mapping is determined by analyzing a database of
simulated experiments. The result of the effort is a simple mapping of a set of measurements
onto the physical parameters of the system.

FP is quite generally applicable to many problems of interpretation in modern-day
physics. It allows a fast interpretation of measurements, up to the point of real-time control of
the experiment. In addition, it can supply insight into the structure of the computer model
describing the experiment by displaying relationships and dependencies between parameters.
FP can be used to predict the relevance of a new type of measurement to the determination of a
specific (set of) parameter(s) even before the measurement device is built. Finally, FP allows a
thorough error analysis to be set up, making a clear distinction between systematic and
statistical errors, which may not be straightforward with the iterative solution methods
mentioned above.

The method of Function Parametrization was first formulated by H. Wind at CERN
[Wind-72; Wind-84), where it was applied to the problem of track finding. The method was
then applied to equilibrium determination at ASDEX by Braams, Jilge and Lackner [Braa-86b].
Their work was continued by McCarthy (McCa-86).
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FP relies primarily on well-known statistical methods and the basic principle has been
elucidated briefly in a previous publication [Braa-86b]. This paper attempts to provide a
comprehensive description of the method. New additions presented are: (1) an explanation of
the behaviour (exponential decay) of the eigenvalues in principal component analysis; (2) a
demonstration of the so-called Latent Root Regression; (3) the rationalization of cutoff criteria
determining the dimensionality of the regression; (4) a detailed error analysis method. FP is
demonstrated with an application to tokamak plasma physics.

4.2.3 Theory of Function Parametrization

4.2.3.1 Introduction

We consider the situation where a physical model of an experiment is available that allows
computation of measurements if the state of the system is known, but where the model is
complex enough such that inversion is difficult or impossible.

The state of the physical system, p, is modelled in terms of a finite set of N}, parameters
(pl,...,pr) =p (Appendix 4.2.6.3 provides a table of notation). Often physical quantities
describing the system are functions of e.g. space, and these quantitics need to be represented in
a parametric form in this formalism (hence the name 'Function Parametrization’). This
necessarily involves a reduction in the number of states representable within the context of the
parametric form of the model with respect to the full model. But because we are only occupied
with those physical states and measurements that are described by a computer model it is
always possible to cover all relevant system states by parametric representations.

The N, measurements that are made on the physical system in the state p are written as a
vector (q;,-.-.qy,) = q- The computer model M that allows computation of g from p can be
understood to be a mapping @ = M(p), which can be non-lincar. Within the context of the
model this mapping is exact. If the model is to make any physical sense, the computation of q
should be stable against small variations in P. On the other hand, it is obvious that most models
should be considered to be essentially projections (the information content of the measurements
is less than that of the physical parameters), i.c. two physical states p and p’, p # p ', may
map to the same measurement: § = q'. Due to finite measurement accuracy this can be
formulated even stronger: two different physical states p and p' may map to two measurement
vectors that are indistinguishable given a certain limited measuring accuracy, llg—q'll < & for
some norm. Therefore the inverse mapping of M is not single-valued. This situation reflects
either a fundamental problem in the modelling procedure or a lack in number or accuracy of the
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measurement data. The problem can be circumvented by restricting the parametrization of p by
means of the choice of f)', such that the inverse mapping, if found, would be single-valued.
Even if this is not possible FP can find an inverse mapping, albeit that some components of f;
will be ill-determined, reflecting the non-single-valuedness of the inverse mapping. It will also
be shown in the following how the ill-determinedness of some parameters can be detected.
Thus, apart from its practical use as an analysis tool, the method can also be used to obtain
rudimentary insight into the structure of the model M or even the adequacy of the measurements
for the purpose of determining the physical parameters ;_J'

The method of Function Parametrization (FP) consists of three steps: (1) a database is
constructed containing a large number (N) of simulations p = p* (& = 1,...,N), where p* is
chosen to lie in the subspace of RN covering (at least) all actual physical states expected to
occur in the real experiment. The model M is used to compute the corresponding measurcments
q = §%=M(p%. (2) the data base is subjected to a statistical analysis, which yields a mapping
f; = ?(ﬁ') + €,where € is a small error term. The statistical analysis can be subdivided into
two parts: (a) a dimension reduction step yielding q = ?(ﬁ') and (b) a regression yielding fa’ =
7@'). Thus ?(c_f) = T(E’(ﬁ’)). (3) the mapping F is used in data analysis to interpret real
measurements q .

We make a distinction between a reduced set of parameters {p;, j < Nig}, Njg < N,,, that
are sufficient to identify the state p uniquely, and the remaining parameters {p;, Njg < j s N,)
that are therefore dependent on {p;, j < N;4} in the context of the model M. Note that we do not
exclude the possibility that there may be some hidden dependencies (e.g. through some external
constraint) between the {pj, J SNiq}. Generation of the data base involves selecting values for
the parameters {p;, j S Nj3}, and feeding them to the model M which will then yield both
(pj Nig <j< Ny} and q. Appendix 4.2.6.1 gives some suggestions for parameter selection.

4.2.3.2 Dimension reduction

There are two reasons for performing the dimension reduction g'(q). Firstly, an attempt to fit
the components of f; with linear, quadratic etc. functions of the raw measurement vector c_f in
order to determine the mapping p = F(q) + € is bound to fail 1fN is large. If we take F to be
a polynomial model of degree k, it needs of the order of N /(k') fit coefficients for each
physical parameter. The number of model simulations needed to dctcnmnc these coefficients is
considerably larger. Therefore a method by which the dimensionality of the measuring space
can be reduced without discarding essential information is required.
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Secondly, the measurements are likely to exhibit mutual (linear) dependencies that
would make the regression T(ﬁ) unstable. Dimension reduction provides a means to stabilize
the regression by removing collinearities.

The well-known method of Principal Component Analysis (PCA) achieves dimension
reduction by discarding linear combinations (‘principal components’) of the measurements that
show little variation over the database, assuming that they have little relevance in the prediction
of parameter behaviour.

This may in some cases not be the best method, because it may be that important
information is concealed in principal components that show little variance (e.g. a physical
parameter is proportional to a linear combination of the measurements that is almost, but not
quite, constant in the database). Conversely, it may be that little information is contained in
components that show a large variance (but are largely uncorrelated to the physical parameters
of the problem). If either of these are the case, then Latent Root (LR) analysis may be of use.

Principal Component Analysis
The physical parameters p and the measurements q are normalized. The normalized vectors are

called p and a:

<y = D, R0 = %) (“.12)
o o

i;‘ = (x;"-<x>j)/<sj G=1,..,N;a=1,..,N; x=p,q) (4.1b)

Here <x>; is the average value of x; in the data base, and o; its spread (i.c. standard deviation).
The dispersion matrices of p and q are computed from :

Dl=——/ X% Gj=1,.,Nsa=1.,N; x=pgq) 4.2)

The diagonal of D" contains the squared standard deviations of the i;‘, which were normalized
to 1. The off-diagonal elements of D™ are the correlations between the components of i;’. D is
a real, symmetric, positive definite matrix. The eigenvalues of D* are sorted such that
A} 24} 2 .. 2 Ay, 2 0. The comresponding orthogonal eigenvectors D*-¢ i= lj’-‘?j are
normalized, IE’jI =1.
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We define new 'transformed’ variables

% = ¢;x" G=1,..Nso=1,..N;x =pg) 4.3)

J

deviation of , and are uncorrelated within the data base. In the following, we shall omit the

Thus, the components ;' of ¥* are linear combinations of the X;". They have a standard
i,
index a.

By inspection of the eigenvalues, some important remarks can be made about the model
MIfMisa purely linear model, then for x = p,q all 2.}‘ for j > N,, are equal to 0. In any model,
if a component of X is linearly dependent on one or more of the independent components of X,
then the variance of the dependent component is accordingly reduced and the linearly dependent
part of its variance is added to the variance of the independent components.

This is an important observation and we shall now illustrate it with a simple example.
Suppose we have two measurements q, and g,, both normalized in the sense of Eq. (4.1), i.e.

6(q;) = 6(qy) = 1. Suppose that q, is of the form

%@ =g +Bay, (4.4)

where g is linearly independent of q; and P is the covariance between q; and q,. Then
6%(g3) = 1 — B2. Computing the dispersion matrix yields:

1B
Di= 45
( . ) 4.5)
Eigenanalysis yields eigenvalues A, = 1 + p and A, = 1 — B, and eigenvectors
11 11
2, =5(1) ?2=5(-1)’ (4.6)

such that, according to Eq. (4.3), §; = (@; + @)/VZ and §; = (q; — qp)/V2. Using these
expressions to compute the variance of §; and g, we find 6°(q;) = 1 + B = A, and 0%(J;) = 1 -
B = A,. The covariance becomes cov(d;,d,) = (N-1)! quqz = 0, as required. This example
clearly demonstrates how the variance 0‘2@1) is incremented by P and the variance Gz(ﬁz)
decremented by the same amount (with respect to 0‘2((_11) and 0‘2((_12), respectively) due to the
dependency of q, on q; given by cov(q;,q,) = B.
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Now suppose we have not two, but N, measurements. Suppose the measurements have
mutual linear dependencies given by:

4 =qp, a0 = +Ba;, as =a; + Baj + aj, etc. 4.7)

Assume B«1. Thus \‘:ov(ai,c_lj) = B (i # j). This is a fictional set of measurements in which all
measurements are equivalent; they all contain an amount of linearly independent information (a})
and and they all suffer the same amount of collinearity (B) with all other measurements. By
analogy with the preceding example, the §; have standard deviations given by

0%@) = 1 + (NP — -1B =1 + BN — 2i +1) (4.8)
This implics, for B small,

02(5‘) A .

- =—-=1-2p, ;=(1-2B)1 A 4.9

@) Ais b orh=A -2 A )

It follows that A/A,, = ¢V 81-28) (exponential decay of the eigenvalucs).

From the fact tiat the dispersion matrix is computed from the normalized vectors X it
follows that if X’ shows any linear dependencics between its components at all, A} > 1. In an
almost purely lincar model, where N, =~ N, — N,, is the number of components of X linearly
dependent on the minimum set of N;y state parameters, the A7 will exponentially decrease in
amplitude until j = N, — N, when they fall 10 zero sharply. In a model with complicated as
well as linear dependencics (as in the second example above), the A} fall to zero with j
approximately exponentially. The steepness of decay depends on the amount of collinearity
between the components of x (in the exampic above: small collincarity means  small, so the
decay is slow). We introduce a collincarity parameter By, given by

In (1 - 2Begy) =2 4.10)
The more non-lincar the model, the slower the decay and the closer B,y comes to 0. Note
however that the parameter ranges also influence the decay: if the parameters P j=1,...Ny
only vary within narrow ranges a linearized model can give a fairly accurate approximation of a
more compiex model and the decay of eigenvalues will not be slow.

The X; are called the ‘priacipal components’ of the vector X. If real measurements are
expected 10 suffer a relative measuring error of €, it is assumed that those principal components
whichshowavrianceoverﬂzdmblnofl;'<(3t)znbodl unimportant in the regression
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and difficult to obtain from real measurements, and we discard them. This is equivalent to the
statement that the ‘signal’ of a principal component should be 'significantly above' (i.e. 3¢) the
noise level €. The remaining ‘i('j, j = L,...,N_ are called 'significant variables'.

Latent Root Analysis

The objective of the Latent Root (LR) analysis [Webs-74] is to find those linear combinations
of the normalized measurement vector components ;, j=1....,N, that show least correlation
with a physical parameter p, within the data base, and eliminate this linear combination from the
regression analysis. We introduce an ‘observation vector' st:

= @ sling PO = (3 Bi) k = 1,...Np). 4.11)

Note that we have again omitted the superscript & for convenience. For each simulation in the
data base, N, such 'observation vectors’ exist, and they contain the value of all simulated
measurements and the k'™ physical parameter. By analogy with Eq. (4.2), we compute the
dispersion matrix:

o L) g (i = 1..Ng+1) @.12)

1.|Nla'.l

The diagonal of EX again contains the squared standard deviations of the components of 5%,
which were normalized to 1. The off-diagonal clements are the cross-correlations. Of special
interest are the E“Ml) clements, the correlations between py and the measurements.

Analogous to the procedure described above the cigenvalues and corresponding
cigcnvecmofE"mcompmed.'l'heeipnvalmsZ;m called latent roots and the normalized
eigenvectors f:-‘ are called latent vectors. They satisfy

B = AT, Fi=1 (4.13)
The latent roots and vectors have some imeresting properties. For instance, if, for some j,

AY = 0 while @)ngs1 * O (where (F})ny, is the last component of 7;) then Eq. (4.13;
demonstrates that there exists an exact lineas relationship between py, and q:

N
_i @) @.14)
G}M i=]

- 1
=-
1
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No regression is necessary as Eq. (4.14) gives a direct relation between measurements and the
physical parameter p,. But exact linear relationships are hard to find in reality, of course, and

this situation will seldomly occur.
If, for some j, both A; = 0 and (?jk)Nq+l = 0, there exists an exact linear dependence
among the measurements. This non-predictive singularity can be removed by discarding the

corresponding j, where

N
q =2 @) 4.15)
i=1

Again this ideal singularity with exact linear relationships between the measurements will hardly
ever occur in reality, but there may very well be near-singularities with A; <y and (f}‘)NqH <39,
where ¥ and 8 arc small numbers. The same discarding procedure can be applied once the
discriminatory levels y and § are set.

The improvement upon the simple PCA procedure is obvious: lincar combinations of the
measurements that show large variance in the databasc but have little or no correlation to the
physical parameters would have been included in the regression following PCA, but can now
be detected and discarded. A disadvantage is that the computing time required both for
determining the mapping F and its evaluation for real measurements takes considerably more

time than the PCA procedure.

4.2.3.3 Regression
lnoudertoobminthcmappingl’,wepcrfamarcgmssionofpjintcrmsoffumﬁonsofﬁ’k for
each j. We remark that it is also possible to regress P, rather than P but the reduction in
dimensionality of the fitting problem thus obtained generally does not compensate for the
increase in complexity of the results. We demonstrate the procedure with a simple polynomial
fit, which takes the form

Ny
p;= cjﬂ’0+§ 11¢1 [qk] +

N

Z 1-%' j:‘l [qk] ’l[i] Z 12 ‘2 [Z—:'] + ... +£j, (4.16)
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where N <N, the ¢ are suitable polynomials of the n™ degree, 8= \/ A; and the c's are the
regression coefficients. The multi-dimensional polynomial functions are referred to as 'basis
functions'. N, is the number of @; used in constructing linear basis functions, N, the number
used in constructing quadratic basis functions, etc. The N_'s can be chosen equal to N for all
n, but generally results are more stable with respect to measurement noise if only N, = N, and
the higher-order N 's are taken smaller. It is actually possible to use stability with respect to
measurement noise as a selection criterion for N,. We shall demonstrate this in section 4.2.4.4.
It is now possible to write Eq. (4.16) as a simple sum over fit coefficients multiplied by basis
functions, which demonstrates that even for non-linear models the regression problem is linear.
We have normalized the significant components to their standard deviations 8; = Y A; (where
we have omitted the superscript q) such that the arguments of the polynomials ¢, are
normalized. This normalization is not strictly necessary. The §/5; are lincarly independent:
cov({/0;,qy/0;) = d;;, where §;; is the Kronecker symbol. However, the ¢,(d;/3;) should also
be linearly independent for all n and i in order for the regression to be well-determined. The
Hermite polynomials H,, satisfy this requirement because, if ¢, = H,,, cov(®,(¥).9y,(¥)) = 8, if
y is a random variable with a normal probability distribution, which makes them well-suited to
our purpose.

From Eq. (4.16) onc may deduce that the total number of basis functions, N, is given
by:

N

S (N +n-1)!
N,=pQ —2 "7 4.17
o Zo’ n! (N, - 1)! @in

where N, = 1 and N__ is the order of the fitting polynomial (4.16). The N,'s must be chosen
such that Ny; < N to prevent the regression from being underdesermined, and preferably
Nps« N.

The regression is performed, and the fitting coefficients ¢ in Eq. (4.16) arc found. The
regression is an ordinary linear least-squares regression. Some caution in carrying out this
regression is necessary, because although the principal components are linearly independent,
the basis functions that are construcied from them may show small collinearity. But if smail
collinearity is present, the fitting coefficients c may take on huge meaningiess values that do not
show up when checking the result of the regression on the unperturbed measurements in the
database (sce section 4.2.3.4), but can seriously influence the interpretation of real
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measurements. Therefore, the significant variables should be perturbed with small random
variations &, prior to the regression so as to destroy this remaining collinearity completely,
while leaving all significant information intact. The amplitude of €, is not critical as long as it
is small: &, = €/3 is a safe choice (where € is the typical relative measurement error). Other
methods of regularization of the regression might also be used.

Thus, we finally have obtained the mapping F, which is given in terms of the averages
and standard deviations of q'in the database, the eigenvectors and eigenvalues of DY, the choice
and number of basis functions, and the fitting coefficients c.

4.2.3.4 Emror Analysis

The systematic error in the reconstruction of physical parameters by means of the method
described above is due to several distinct sources: (1a) the (analytical) model itself is only an
approximation of the physical system and the simulated measurements do not contain as much
informacion as the physical quantitics in the model, (1} the parametrizacion of the model (i.c.
the computer mogdel) is a further limitation in the description that may lead to errors, (1c) the
dimension reduction as described in section 4.2.3.2 reduces information content of the
measurements, and (1d) the regression, being a least-squares fit, reduces the information
content even further. The statistical error in the reconstruction is due to (2a) measurement
errors, (2b) digitizing noise in the measurements, and (2c) computational inaccuracy in the
evaluation of F. In the following, we indicate how the combined effect of these systematic
(except for (1a)) and statistical errors can be estimated. Note that random measurement noise
having a normal (Gaussian) distribution may lead to skew statistical errors in the physical
parameters. We do not investigae this here, but it is casy to evaluate this skewness numerically

using the mapping F.

Definition of error measures

We study the reliability and sensitivity 10 measurement noise of the mapping F found in section
4.2.3.3. The systematical error introduced by the mapping can be estimated by computing the
physical parameters from the simulated data in the database using the mapping F and comparing
tiem io the stored values p;. The systematic reconstruction esror is defined as

€ Y = Nlh.l z (Fi(@a) - Pju)z. (4.18)
a

wMammoverﬂlNﬁnmhﬁms.c';"kmamgesymﬂuﬁcdmmmdmbanof
th

thej parameter.
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The statistical error in the computation of p; can be estimated for any observation E]'
individually by

(es;at)Z = Nstlnt"l ; (FJ(?]"F_G’B) - Fj(a’))z, (4.19)

where B runs from 1 to N,,,, (chosen arbitrarily but not too small) and E’p is a vector of random
variables. The standard deviation of the i" component of € g» O(Ep;), is equal to the
measurement error in the i" measurement. 8’;” is a function of q and therefore variable over
the data base. We compue €7 at the centre of the data basc parameter space. Nevertheless the
statistical error can also be evaluated for real measurement data, giving a precise measure for the
noise contribution in the reconstruction error.

The combined effect of the statistical and systematic error, the total reconstruction error,
containing the effects of both the systematical and the statistical error can be estimated from

€ = g 2 F(datE ) - pro)’s (4.20)
[+ 2

where ot runs from 1 to N. Approximately, (€5)° ~ (€7%)” + (%",

If the spread of a parameter within the database is small, the error €; may also be small
without predicting variations in the parameter correctly. Therefore the quantity €;/0; is
considered a better indicator for the quality of parameter reconstruction than €; itself.

The error estimates (4.18) and (4.20) allow us to search for an optimal combination of
basis functions that gives maximum reconstruction accuracy while being not too sensitive to
measurement noise.

Reconstruction qualifier

The results obtained by FP are only valid for physical states within, or close to, the subspace of
the total physical statc space covered by the data base. If a physical state lies within this
subspace, we know that the quality of the reconstruction can be estimated by means of the error
measures defined in the previous section. A measure for the reliability of the results is therefore:

Q= (4.21)

1 i
Noiat a; + (2%

where £™* is the relative error that the transformed measurement i suffers due to the
measurement errors (€™}, i=1,..,N,). Thus, Q is an indicator for “closencss” of a
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measurement to the "centre” of the subspace (of the total parameter space) that is covered by the
simulations. If Q = 1, the measurement is well represented within the database and the accuracy
estimates made above apply. If Q » 1 (Q > 4) for a particular measurement, the results obtained
by FP are extrapolations beyond the boundaries of the simulated subspace and no indication of
the accuracy can be given. Such an observation can be ignored, or, if it is known that the
measurements are not at fault, the data base can be extended to include the experimental
situations not covered in the existing database, or, if it is known that one or more specific
measurement signals are failing, these can be reconstructed by minimizing (4.21) while keeping
the correct signals fixed.

4.2.4 Application to the RTP tokamak
424.1 Introduction

Tokamak physics
We shall illustrate the procedure of FP with an example from tokamak plasma physics. A
tokamak plasma is a toroidally shaped ionized gas through which a large current flows in the
toroidal (¢) direction, along the exiernally imposed toroidal magnetic field (the geometry is
clarified in Fig. 4.1). The cusrent produces a magnetic ficld in the poloidal (transverse) direction
which balances the outward —Vp pressure gradient force by an inward 7 x B force (7 is the
current density). When these forces are equal and opposite, the plasma is in equilibrium.
Treating the plasma as a single-specics ideally conducting fluid and assuming 1oroidal rotational
invariance, the equations govering the equilibrium (the pressure balance supplemented with the
Maxwell equations), can be written down in terms of the poloidal flux function . The poloidal
magnetic ficld is given by

B, =% Vwx %, 4.22)

where we have adopied the wsual cylindrical coordinase system (R,Z.$). The equilibrium
equation can be writien
y - ]

Aty = [R;i R R * 353|¥ = ~HoRis = —HoR'P - FF, (“4:23)
where j, is the toroidal currest deasity, p(y) is the pressure, F(y) = RB, which is relaed to the
poloidal current density and * desotes J/0y. This is known as the Grad-Shafranov (GS)
equation [Shaf-58). It is a second-order diffesential equation with 2 source functions (p and F).
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If the source functions and suitable boundary conditions are given, a single solution Y(R,Z) can
be found by solving the equation. In an experimental situation, however, the source functions

are not known a priori.
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Fig. 4.1  Poloidal cross-section of the RTP tokamak.

RTP
The Rijnhuizen Tokamak Project (RTP) Tokamak is schematically shown in Fig. 4.1. The
experimental data consist of 12 poloidal ficki measurements (made at the Jocations indicated by
‘pick-up coils’ in Fig. 4.1), 12 radial ficld measurements (made using wire loops attached to
dwﬁm)andalmsmdﬁem&HB&qu-ﬁ.Thephysicdpmof
intcrest are, e.g., the location of the plasma boundary or the current density at the plasma
centre.

Given the kind of measurements available, solution of the GS equation is only possible
by making restrictive assumptions with regard 10 the source fuactions in Eq. (4.23) (genenally
referred o as ‘profiles’). Even thea the solution proceduse is time-consuming: it consists of

Chapser 4 - Function Paramewizasion 63



selecting the two profiles, solving the equilibrium, computing the corresponding magnetic data
and iteratively adjusting the profiles and other parameters until a satisfactory reproduction of the
real measurements is found. This procedure has to be carried ot O(100) times for a single
experiment lasting 100 ms in order to get an indication of the time-development of the plasma,
and several tens of experiments can be carried out each day. This leads to an intolerable burden
on the computer system with traditional equilibrium solver programs. FP provides the means to
make such analysis feasible.

4.2.4.2 Parametrization
In our example the reduced set of parameters {p;, j < Niy} used in identifying the equilibrium
are the following. (1) L is the total current flowing through the plasma. (2) By is the value of
the toroidal field on the torus axis. (3,4) (st, st) is the location of the geometrical centre of
the plasma boundary in cylindrical coordinates. (5) a,;,, is the minor radius of the plasma. We
have assumed the plasma to have a circular shape in a poloidal cross-section, and the flux
surfaces are taken to be circular as well. The plasma column is assumed to have up-down
symmetry with regard to the Z = Z,,, planc. (6) 8 is the ‘Shafranov shift, i.c. the outward
displacement of the magnetic axis with respect to R, (8 = Afay,, where A is the Shafranov
shift in m, see Fig. 4.1). 8 is closely related to the central pressure. (7,8,9,10) The remaining
quantities are profile parameters (ar.er,ap.€p, cxplained below). Thus, Ny = 10.

The profiles are written down in a dimensionless form (unit profiles). The amplitude of
the profiles is then given by the other parameters, and the unit profiles themselves only contain
shape information. The unit profiles are chosen to be:

Tiy)= (1 +apy +bpyd)°r (ar +bp=-1) (4.242)

Ti(y) = (1 +agy+bpy?)*n g + by =-1) (4.24b)

Here v is a normalized flux coordinate: w = 0 on axis and y = | at the plasma boundary. This
choice of profilc parametrization is motivated by the observation that measurements made on
typical RTP discharges can be well reproduced by cquilibria gencrated using this
parametrization. The unit profiles I" and I1, appearing in the HBT equilibrium solver [Goed-
84), are related to the pressure derivative (p') and poloidal current (FF) profiles mentioned
above through:
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ABeB?

Pty =- ol H(y) (4.25a)
anznABg B
FF' = gy — — .
W) — [F(v) 28H(w)] (4.25b)

where A and B are eigenvalues of the GS equation and o is a dimensioniess parameter
measuring the total poloidal flux: a = a;‘:ﬁnBoltbl (here @, is the unnormalized flux at the
plasma boundary). A,B a and @, are determined by the MHD equilibrium code HBT .

Appendix 4.2.6.1 lists the values of the parameter ranges used for the creation of a
database covering the RTP experiment (N = 1000 simulations). The central value was found by
analyzing a typical discharge (R19900321.017) at t=50 ms. (in the so-called flat-top or steady-
state phase). We defined a x2

, 2 (ql - qmeils)Z
X = —_— (4.26)
N, €

Where €™ is the measurement error in the i™ measurement q™$™. We then computed an
equilibrium with arbitrary choice of the parameter values and computed xz from the simulated
measurements g;. We chose slightly different values of the parameters and iterated, thus
minimizing x2 until it reached a value close to N, indicating good reproduction of the
measurements. This equilibrinum was taken as central value for the database. Note that the
profiles used are fairly broad, reflecting the current type of plasmas produced in the experiment.
In the near future, more peaked profiles might become more common. Should the need for such
a change in parametrization occur, the reconstruction qualifier Q discussed in section 4.2.3.4
will automatically signal this and a new database using c.g. narrower profiles can be
constructed.

4.2.4.3 Principal Component Analysis
We performed PCA exactly along the lines of section 4.2.3.2. First we determined the

cigenvalues of the dispersion matrix of q. Fig. 4.2 displays the cigenvalucs vs. their index
number graphically. As expected, they decay exponentially (cf. Eq. (4.9)). If we determine
B.on (Eq. (4.10)) from the exponential decay, ignoring the non-exponential tail for i > 20 that is
due to finite computational accuracy, it follows: B.;(RTP) = 0.29.

Chapter 4 - Function Parametrization 65



10_
< [ A = 0.008 level
E L
10}
[ &
[ e
20 ]
_30' P I S S
0 10 . .20
index, 1

Fig.42 Eigenvalues of the dispersion
matrix of q versus the eigenvalue index
number for the RTP database. The dashed

line is the line In(A) = 3.68 —0.878i.

4.2.4.4

Regression based on PCA

Regression and error analysis

The second step in PCA is the
discarding of principal components. The
relative measurement error in the magnetic
measurements at RTP is approximately 3%.
This suggests (cf. section 4.2.3.2) a cutoff
at A = (3-0.03)? which we have marked in
Fig. 4.2. Thus, keeping only 9 of the 25
principal components might already be
sufficient to reproduce the plasma
parameters within measuring accuracy. We
will investigate this further in the next
section.

Table 4.1 lists the error estimates defined in section 4.2.3.4 for the RTP database. We have
performed the regression along the lines of section 4.2.3.3, using the polynomial regression

model with Hermite polynomials.

Table 4.1: Plasma parameter reconstruction error analysis for RTP database
N, =8, N, = 3. (¢'s and £'s normalized to the central value)

Parameter

Central value  100000.
Spread, o; 0.22
e 0.0022
i 0.0093
&= 0.0093
€70, (%) 0.96
&' "o, (%) 42
£%/6,(%) 4.2

Ryeo
0.721
0.048
0.0039
0.0019
0.0043
8.0
4.0
8.9

2min 5
0.133 0.0617
0.13 0.13
0.062 0.12
0.014 0.011
0.064 0.12
47. 93.
11, 8.5
48. 94,
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Table 4.1 clearly demonstrates how some parameters are easily recovered from the magnetic
data while others are hard to determine at all. The reconstruction of L, (which can analytically be
expressed as a simple sum over the poloidal field measurements) is dominated by the statistical
error. The other parameters listed here have reconstruction errors that are dominated by the
systematical error.

Of course, many more parameters than the ones listed in table 4.1 are available to
describe the plasma state p. Tables like 4.1 can also be used to determine which plasma
parameters can be determined most accurately from the available measurements and are
therefore best suited for the purpose of giving a description of the plasma. In this manner we
have found that of the two most common sets of moments used in describing the magnetic field
outside the plasma, i.e. current and multipole moments [Mill-90], current moments are best by

far.

The error estimates (4.18) and (4.20)
100 allow us to search for an optimal
1 combination of basis functions giving
80 - maximum reconstruction accuracy while
s ool being not too sensitive to measurement
v | noise. The data in table 4.1 were compiled
@ 40l from a reconstruction that was already
20 t optimized. We shall now demonstrate how

t we came to this choice of basis functions.

0 sttt bttt b While €** decreases monotonically

with the number of basis functions, e';"
increases, leading to an optimum (i.c.

Fig. 4.3 Reconstruction error in G,,;, minimum) in Erﬁc- Taking too many basis

as a function of N,. functions deteriorates the regression results,
because the higher-order basis functions are
more sensitive to noise.

Figures 4.3, 4.4 and 4.5 illustrate the behaviour of €*}" and €"° as a function of the
amount of linear and quadratic basis functions (N, and N,, respectively, see Eq. (4.8)). We
have selected a;, and R,., as illustrations of the procedure. From Fig. 4.2 we expect the
reconstruction to be optimal at N; = 9 in Fig. 4.3. In fact, what we see is that the first 5

principal components already contain the essential information necessary for reconstruction
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Fig. 45
as a function of Ny, N; = 8.

Reconstruction error in R,,,

of amin. The predicted minimum in 5° is
fairly broad (from N; =5 to 10), and taking
N, anywhere in this range will not influence
the reconstruction significantly. Note that
taking N; = 11 (= Nyg+1 ! ) or more leads to
5 but
unacceptable instability with respect to
measurement noise. We selected N; =8 on
the basis of graphs like Fig. 4.3 for other
parameters, keeping in mind that N, should

be equal to N;4, approximately. Having

a significant reduction of e

selected N,;, we proceeded along similar
lines for the selection on N, (Fig. 4.4). N,
does not have a significant influence on the
reconstruction of a;, as long as N, <6,
but it does on the reconstruction of Ry,
(Fig. 4.5). Also, the computing time is a
strong function of the N, 's (see Eq. (4.5)).
This motivated us to select Nj = 3,

Regression based on LR

We have analyzed the same RTP database
with the Latent Root analysis method. We
found that in order to keep between 6 and 8
principal components, the discriminatory
levels y and & should be chosen y=8 =0.3.
The actual number of principal components
kept is different for each plasma parameter,
of course: e.g. accurate reconstruction of the

plasma current I, requires less principal components than any other plasma parameter. This is
demonstrated by the listed number of principal components in table 4.2.

Also listed in table 4.2 is the reconstruction accuracy for each parameter. The numbers
listed should be compared to those of table 4.1. The Latent Root method in the case studied here
reduces the systematical error, while increasing the statistical error slightly. The total
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reconstruction error € ;- using LR is slightly better than the one using PCA. For most plasma

parameters the difference is only slight, however, except for 8. LR has detected and removed a

non-predictive principal component for this parameter.

Table 4.2:  Plasma parameter reconstruction error analysis for RTP database

using LR. Nj is equal to the number of principal components kept: Ny,

and N, = 6. (0's and €'s normalized to the central value)

Parameter I Ryeo dmin d
Noein 6 7 7 7
Central value  100000. 0.721 0.133 0.0617
Spread, o; 0.22 0.048 0.13 0.13
eSJYS 0.0011  0.0036 0.052 0.085
ES;‘" 0.0090  0.0022 0.031 0.035
e 0.0097  0.0043 0.064 0.098
e"1°/0; (%) 0.47 7.6 39. 66.
e"/0; (%) 4.0 4.6 23. 27.
/0, (%) 4.3 8.9 48. 76.
20—
4.2.4.5 Results

Figures 4.6 through 4.9 show the time
traces of some plasma parameters that were
obtained from real measurements using FP,
for RTP discharge R19900321.017.

Figure 4.6 shows the time trace of
the plasma current. After initiation of the
experiment, it rises quickly to 100 kA, to
remain in the ‘flat-top’ phase for
approximately 100 ms.

Figure 4.7a shows the time trace of
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Fig. 4.6  Plasma current for discharge
R19900321.017.
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R, Initially, there is a large oscillatory movement that is due to an imperfection in the plasma
position control. The FP signal can be compared to the A, signal, which is simply the position
of the weighted current centre with respect to the R = 0.72 (or central) position, This signal is
displayed in Fig. 4.7b, and compares well to 4.7a.

1 1 1
066, 004 008 012
Time (sj

Fig.4.7a Plasma position for discharge
R19900321.017.

0.18 4 i ¥ T T T
E 0.16
5
w014
0.12
0.106—"004 008 012
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Fig. 48 Minor radius of plasma for
discharge R19900321.017.

70

Fig. 4.7b Horizontal plasma position
(traditional method) for discharge
R19900321.017. Note that for t < 0.03 s the

ADC signal exhibits saturation.
5. L] L ) ) ] | |
4
3.
o
2.r
1.
0. i 1 1 — ] |
0. 0.04 0.08 0.12
Time (s)
Fig. 49 Reconstruction gualifier for
discharge R19900321.017.
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Fig. 4.8 displays the time trace of the a_;, signal. During the flat-top phase, it attains the
maximum value (0.178 m) dictated by the circular limiter (Fig. 4.1) within measuring accuracy.

Fig. 4.9 displays the reconstruction qualifier Q. Apart from spikes at the beginning, it
stays low (=2) during the entire shot, indicating reliable reconstruction.

4.2.5 Swmmary and Conclusions

4.2.5.1 Principle and Advantages of Function Parametrization

Function Parametrization is a method to invert computer models that map physical parameters
that describe the state of a physical system onto measurements. The method involves generating
and storing a large number of well-chosen simnlations and statistically analyzing these. The
result is a mapping of the measurements onto the physical parameters that requires little
computing time to evaluate. The major advantages of FP over other analysis methods are: it is
quite general; it is fast, allowing real-time control of experiments; it allows a thorough error
analysis (as was demonstrated in this paper); it can provide insight into the structure of the
computer program used 10 model the experiment; it can be used to analyze sets of dissimilar
mecasurements; it can be used to study the adequacy of certain new measurements for
determination of specific physical parameters (cven before the measuring equipment is built).

4.2.5.2 Power and Limitations of Function Parametrization

Generally, the computer mode]l mapping the physical parameters onto the measurements
reduces information content, i.c. the measurements do not represent full knowledge of the
physical system, or, in other words, the mapping is cssentially a projection. This necessarily
mcans the inverse mapping cannot descrmine all physical parameters exactly. This problem can
be circumvented by restricting the physical parameter space, i.e. by choosing a certain
parametrization of the physical sysiem that limits the solutions of the inverse problem to a
certain class, provided knowledge is available 10 confidently make this restriction without
excluding essential parts of the physical stsse space. Aliernatively, onc may decide 10 accept
such ill-determinedness of some physical parameters as being inherent to the analysis of
inadequaic measurements.

On the other hand, the measuremests generally also contaia redundant information. As
the inverse mapping method relics on regression analysis, large dimensionality of the
measurement space aad metual (lincar) dependencies betweea the measurements are
undesirable. Two methods ase suggested 10 reduce the dinensionality of the measuring space
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without rejecting essential information: Principal Component Analysis (PCA) and Latent Root
Analysis (LR).

PCA selects those linear combinations of the measurements that have maximum variance
within the database. Generally, these will also have the highest predictive relevance. However,
if the computer model is not very stable there may be combinations of the measurements that
show a large variance over the data base but have little relevance to the physical parameters.
Also, a specific parameter may be related to a subset of the measurements that show only small
variance (rather than all measurements). In these cases Latent Root analysis may improve the
solution of the model inversion problem, as it selects those combinations of the measurements
that have highest correlation with specific physical parameters.

4253 Application 10 Tokamak Physics: RTP

The practical example of Tokamak equilibrium reconstruction presented in this paper
demonstrates that FP is capable of making a fast, accurate and reliable computation of plasma
parameters from the magnetic measurements presently available at the RTP experiment. As
soon as other relevant measurcments become available (c.g. polarimetry or SXR
measurements), these can also be incorporated in the analysis to help determine the equilibrium
more accurately, and in more detail. FP has already been successfully applied to polarimetric
data at the TEXTOR tokamak [Mill-91a), and this is anticipated for RTP as well (in
combination with magnetic data). Also, FP is fast enough 1o make it a likely candidase for real-
time plasma control and feedback.

4.254 Conclusions
The method of Function Parametrization provides a2 means 10 camry out fast data analysis of
measurements done on physical syssiems modclled with large and complex computer codes. The
analysis can be carried out using only minimal computing time. This is achicved by
concentrating the main computational cffort before the beginning of the physical experiment.
The method may be of wec in oth=r contexts as well: it may relieve any repetitive running
of large compuser programs, or st least give a first approximation of the solutions that such
programs attempt 1o find, thus reducing the scarching cffort. Its usc is also indicated with
eXpert sysiems.
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4.2.6 Appendix

4.2.6.1

Database generation: Method of parameter selection

Database generation is carried out by selecting the N,, independent parameters P, =Ny
randomly from a range R;: B < p;<p; . computing the remaining plasma parameters and

Fig. 4.10 Truncated Gaussian probability
distribution function.

the measurements, and repeating this N
times. The random selection is made using a
truncated normal (i.c. Gaussian) probability
distribution function f j( P j) with its
maximum at

pf""(whmp;"‘“sp}"i“sp;""‘)mdwidm
o, (Fig. 4.10). The choice of a Gaussian-
type probability distribution function is not
essential 10 the method. The upper and lower
boundaries only serve to prevent extremely
vnlikely stases of the plasma to be included
in the database. The value of p}"i" is
inspired by expectations about thc most
likely experimental situation as indicated
above, and likewise the choice of o, is

inspired by the expecicd spread. This procedure will cause the regression (sce below) 10 be
most accuraic ncar the most likely experimental situation.
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4.2.6.2 Database generation (RTP)

Table 4.3: Plasma state parameter distribution settings for database generation

Parameter Lowerbound  Central value  Upperbound  Spread, o

I, 10000. 100000. 150000. 30000.
B, 1.0 2.03 2.3 0.2
Reo 0.65 0.72 0.80 0.04
Zgeo —0.05 0. 0.05 0.02
Amnin 0.09 0.173 0.178 0.04
5 0.04 0.0555 0.1 0.01
ar -1.2 -1.0 -0.8 0.1
er 0.2 0.7 1.2 0.2
ag -1.2 -1.0 -0.8 0.1
e 0.1 0.3 0.8 0.15
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4.2.6.3 Table of notation

P state of a physical system
P physical parameter vector (p;,...Pnp)
q measurement vector (qy,...ANg)
M computer model g = M(P)
F  inversemappingp =F(q)+ €
N number of simulations = size of database (& = 1,...,N)
N,  number of physical paramesers j = 1,...,Np)
Nq number of measurements (i = l,...,Nq)
N;g  number of physical parameters sufficient o identify a physical stax
<x>; average of x;
o;(x) standard deviation of x;
x  normalized vector X (i.c. having zero mean and unit standard deviation)
% 'transformed’ vector X (having lincarly independent components in the databasc)
N,  number 8¢ significant variables
#.(x) basis function of a® order in x
c;;  regression coefficient
N,  number of ‘transformed’ vecior components used in constructing basis functions
of n™ order
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4.3 Application of Function Parametrization to the Analysis of Polarimetry
and Interferometry data at TEXTOR

B.Ph. VAN MILLIGEN, H. SoLTwisci!, N.J. LoPEs CARDOZO

FOM Institest voor Plasma Fysica "Rijahuizes”
PO Box 1207, uaonswmm

) lnationt far Ph?y‘.w-.l'
D-W 5170 Jalich, Germany ek,

4.3.1 Abstracs

Function Parametrization provides a way 10 do complex data analysis in a fast and reliable
manacr that allows ister-shot analysis. The method has been used 10 analyze polarimetry and
interferometry data st TEXTOR with the purpose of obtaisiag spetial distributions of the
clectron deasity and 1oroidal plasme currest. A standard TEXTOR discharge is investigated,
allowing comparison of the reeults with resulis obtained by conveational methods of data
analysis. Agrecmest betwees the two is geacnally good. For the central safety factor we
derermine a value of gy = 0.8 4 0.1 ia accosdence with previous calculations. The new method
allows easy incorparation of additional deta.
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4.3.2 Introduction

In a tokamak, the total toroidal plasma current can be programmed, but it is not possible to
control the distribution of the current over the plasma column. In fact, it is not even possible as
yet to make direct, accurate measurements of the current density profile. The experimental data
available are rather indirect, such as the magnetic fields outside the plasma (which give very
little information on the current density in the plasma centre, especially for near-circular plasma
cross-sections) or the Faraday rotation a polarised laser beam experiences when passing
through the plasma. To construct the current distribution from those measurements, it is in
general necessary to parametrize the plasma state (i.e. the profiles of density and current, or the
MHD equilibrium) and to simulate the measurements corresponding to that plasma state. Thus
the task is to find a set of parameters for which the simulaied measurements match the
experimental values within the measuring accuracy.

This type of problem is very well suited to be tackled with a te~hnique known as
Function Parametrization (FP). In general terms, this method provides a direct mapping of the
observables onto the state parameters of a physical system. For the problem at hand, this means
that the current density profile is parametrized, and the profile parameters are expressed in terms
of the magnetic ficlds or Faraday rotation measurements. To achieve this, 2 database is
generated containing a large number of MHD equilibria. The equilibria are chosen in such a
way that all normal plasma conditions are covered by the variation in the database. Along with
cach equilibrium, a set of simulated measurements is computed and siored. The database is
subjected 10 a statistical analysis proceduse that results in a direct mapping of the measurements
onto the physical parameters. This mapping is a set of simple functions which express the
plasma parameters in tcrms of the obscrvables. These functions can be evaluated for
experimental data using 2 misimum of CPU time. Thus, the advantages of FP are twofold:

- once sct up, the analysis is very fast,
- the analysis is inermally consistent, i.c. onc always finds results within the class of

In this paper we describe the application of FP 10 the analysis of polarimeter data at
TEXTOR. As has been shows previously, the combination of polarimetric aad inerferometric
measurements can be used 10 recosstruct the cusrest dessity profile. For this purpose an
interpretation method has boea developed that asswncs a flux surface geometry of shified
circles and ieratively adjusts the curvent dessity profile until the simelated measurements meich
the experimental values [Sok-86b). We shall refer 1o this method as Method 1. Other ierative
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techniques for the interpretation of polarimetry and interferometry data are described in [ORou-
88; Hoff-88]. In this paper we compare the results obtained with Method I and Function
Parametrization. Particular attention is paid to the value of the safety-factor in the centre of the
discharge.

4.3.3 Interferometry and polarimetry at TEXTOR

At TEXTOR, the plasma is intersected by nine linearly polarized Far Infrared laser beams,
vertically aligned in a poloidal cross-section (Fig. 4.11; details on the experimental setup may
be found in Refs. [Soit-86a, Soit-86b}).

Fig. 4.11 Schematic layout of the
TEXTOR polarimerry | imerferometry setup.

To good approximation, the laser
light experiences a phase shift Ap and 2
polarization rotation angle @ upon passage - 987654321
through the plasma given by [Solt-86b]:

Incrferometry:
z
M =i [n.dZ (c; =2.818-10P m) (4.273)

-Z
Polarimerry:
A
¢ =c;3? [ By, dZ (c2=2615100°T7) (4.27b)
-Z
Here the usual cylindrical coordinste syseems (R,Z $) is adopied; n, is the clectron density and
B,nmmdupmwmm»ummmw
arc cxpressed in S.1 waits with Ap and @ in radisas. The probiag beam waveleagth is
A =337 - 10°° m. The validity of the assumptions undertying these approximate formulas has
been discussed in Ref. [Sok-80).
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Fringe shift (rad)

80

Interferometry signals

Time (s)

Fig. 4.12a The inserferomesry signals for TEXTOR discharge #14214, with arbitrary offset.

The interferometry snd polarimetry error levels quosed are: €5, = 0.126 rad and £, =

0.0026 rad (these absolute esror levels correspond 10 approximately 0.25% and 1.5% relative
error levels, respectively, for typical sigaal valucs) [Solt-86s). Typical data are shown in Fig.

4.12.
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Fig. 4.12b The polarimetry signals for TEXTOR discharge #142 14, with arbitrary offset.

4.3.4 Dasaanalysis

43.4.1 Conventional method

The analysis procedure preseatly in use at TEXTOR (Method I) has been described in detail in
Refs. [Solt-86a, Solt-86b). The main stcps may be summarized as follows: (i) expand the
experimental data AP(R;) and a(R;) (with i = 1....,9 representing the installed probing beams)
by suitable spline-inserpolations inso full phase shift and Faraday rotation profiles along the
major radius; (ii) divide the piasma cross-scction into a large number of ring zones (N > 100)
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corresponding to a set of horizontally shifted circular flux surfaces in rough agreement with
numerical equilibrium calculations; (iii) assume both the electron density n, and the flux change
d¥/dp to be constant in a given ring zone and approximate the integrals in equations (4.27a)
and (4.27b) by finite sums with the number of terms equal to the number of ring zones
intersected by a virtual probing chord; (iv) invert the resulting systems of linear equations to
obtain a first approximation for n(p) and d¥/dp; (v) impose certain constraints (such as the
flux change on the plasma surface being in accordance with the total current) and calculate
‘theoretical’ phase shift and Faraday rotation data for the probing beam positions R;; (vi) vary
the flux surface geometry and iterate the procedure until the 'theoretical’ signals match all
experimental ones as closely as possible.

Owing to the fact that both A¢ and c: vanish at chords near the plasma boundary, no
accurate information can be obtained from the edge region.

Besides being a time-consuming process, this method of data analysis derives the shift
of the flux surfaces only from measured asymmetries in the A¢(R)- and 0(R)- profiles and not
from detailed equilibrium calculations. It should be noted, however, that occasional cross-
checks with an extensive MHD equilibrium code have confirmed both the underlying
assumption of circular flux surfaces as well as the resulting eccentricity.

4342 Function Parametrization

The method of Function Parametrization takes quite a different approach. The state p of the
plasma is modelled in terms of a finite set of parameters {p;, j=1....Np}, where N, is the
number of physical parameters involved in the model. Below we shall investigate the actual
parametrization with which standard TEXTOR discharges are represented.

Once the parametrization is fixed, the parameters p; are varied randomly within certain
ranges. These parameter ranges are chosen large enough 10 cover most plasma states occurring
in real experiments. For every parameter set an MHD equilibrium is computed along with
simulated measurements (q;, i=1....,N;). For every simulated equilibrium the {g;, p;} arc
stored in a database. At this point we remark that {p;) includes both the minimal st of plasma
state parameters that are sufficient to identify an equilibrium, as well as a number of derived
parameiers that are of physical interest but are dependent on the siate parameters.

The database is subjected to a statistical analysis procedure that results in a direct
mapping of the measurements omo the physical parameters, p = F(q) + €, where (€] is small.
In the following we very briefly summarize the method. A more detailed account is given in
{Solt-80]).
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The measurement vector q is normalized: g; = (q; — <q;>)/C;, where <g;> is the average
value of q; in the database and ©; its spread. Then , the dispersion matrix D is computed
according to

where N is the number of simulations made. The eigenvalues and eigenvectors of D are

computed: D~E'J- = lj?j, where X 24; 2 ... 2 Ang 2 0 and IE'J-I = 1. We define 'transformed’

variables

~

q;= —C’IEI (i=1,...,Nq)

The variables q; are linear combinations of the measurements with standard deviation ‘\/:,
They are uncorrelated within the database. The §; are used in a regression: p; = £;(q1,d2,-.-.dng)
+€;. We take f; to be a Hermite polynomial of order 2. In order to reduce the dimensionality of
the fitting problem we discard those §; that have A; < (3¢)?, where ¢ is the relative measurement
error. The latter procedure is known as principal component analysis. The result of the
regression is a mapping of measurements onto physical parameters,
p=F@).

MHD equilibrium model
MHD equilibrium is described by the Grad-Shafranov (GS) equation:

A*Y = -y Rj, = —ugR%p’ -FF (4.28)

where ¥ is the poloidal flux and the prime denotes d/d¥; jo(R,Z) is the toroidal current
distribution (jy=0 outside the plasma boundary df2). p(‘¥) is the pressure profile (not to be
confused with the physical parameter vector p) and F(¥) the poloidal current profile: F(¥) =
RB,.

The plasma equilibrium is computed by means of 2 fixed boundary ideal MHD
equilibrium code: HBT [Goed-84). The code has been extended to perform polarimetry
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simulations. In this computer model, a state of the plasma p is identified by the following set of
quantities:
1) Main plasma parameters:

L, (plasma current) and B, (toroidal magnetic field on torus axis)
2) Flux surface geometry parameters specifying the location of the magnetic axis and
parameters specifying the shape of the plasma boundary
3) Profile parameters specifying the equilibrium profiles p'(¥), FF (V)
4) Electron density parameters specifying the electron density n,
The first objective of this investigation is a comparison of the results of FP with those of
Method 1. Therefore we choose the parametrization of the various quantities to match the
assumptions underlying Method I as closely as possible. Thus, with regard to 2) we use
circular flux surfaces that exhibit horizontal but no vertical displacement. With regard to 4) we
set n, = n,(¥). Note that n, does not appear in the Grad-Shafranov equation, so that, strictly
speaking, it can be any function of (R,Z). However, in ohmically heated discharges the
assumption that n, is a flux quantity is closely satisfied and it conforms with Method 1.

With regard to the profiles (3,4) we make the following choice which allows for a wide
variety of (non-hollow) profiles:

I(y) = (+apy+bydT  (ap+bp=-1) (4.29a)
y) = (1+apy+bgyd®N  (ag+bg=-1) (4.29b)
n(¥) =ng (1+ay +by?n  (a,+b,=—-1)  (4.29¢)

Here v is a normalized flux coordinate: y = 0 on axis and y = 1 at the plasma boundary. The
unit profiles I" and I1 that appear in the HBT code are related to the more familiar pressure
derivative (p") and poloidal current (FF") profiles through:
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a [, e
v [p ) + S FF (\v)} (4.302)
W =22 ) (4.30b)
ABeB? P '

where A and B are eigenvalues of the GS equation and o is a dimensionless parameter
measuring the total poloidal flux: o = a.lzninB(,/d)1 (here @, is the unnormalized flux at the
plasma boundary). A,B and o are determined by the MHD equilibrium code HBT [Goed-84].
The electron density profile (4.29c¢) is such that it has a continuous first derivative at the
magnetic axis.
Summarizing, the plasma state p is modelled with 9 parameters using these
parametrizations of the profiles :
2 parameters for global plasma definition: I,, By
3 parameters for the plasma geometry definition:
R, (the geometrical centre of the plasma boundary),
a,;, (the minor radius of the plasma boundary) and
8 = (R a5~ Ryeo)/amn (the dimensionless Shafranov shift of the magnetic axis)
4 parameters for equilibrium profile definition: a, e, ap, e
In addition, the electron density profile is modelled with 3 parameters: n, a, and e,,.

Daza base generation
To get an indication whether the parametrization chosen in the previous section is sufficient to
describe real data, interferometry and polarimetry signals of a prototypical TEXTOR shot (#
14214) were compared to data simulated by the equilibrium program HBT. The signals were
taken at time t = 1.33 s, when the plasma was in steady-state. The plasma state parameters were
adjusted until satisfactory agreement with the measurements was obtained. We found that the
I'- and IT-profiles need the freedom of ar, ay, ep and e in order to reproduce the data within
the measuring accuracy.

Having found a satisfactory reproduction of the measurements for a prototypical
discharge, a database of equilibria was created by varying the plasma state parameters around
this typical state. Table 4.4 lists the central values and the bounds chosen for each parameter.
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Table 4.4: Plasma state parameter range settings for database generation

Parameter Lower bound Central value  Upper bound Spread, ¢

I, 100000. 300000. 500000. 100000.
B, 1.7 2.02 2.3 0.1
Rgeo 1.67 1.72 1.80 0.04
amin 0.35 0.48 0.53 0.03
3 0.05 0.08 0.15 0.02
ar -1.4 -1.0 -0.7 0.2
er 1.5 2.2 2.5 0.2
ag -1.4 -1.0 -0.7 0.2
en 15 2.2 2.5 0.2
n,o/(10'%) 0.5 4.0 3.0 3.0
a, -0.9 -0.1 0. 0.2
e, 0.5 1.4 2.5 0.5

The MHD equilibrium code HBT was rua for 600 randomly chosen plasma state
parameter values which were selected from Gaussian probability distributions centred around
the ‘central value' with a spread ©. The probability distribution functions were truncated at the
‘lower bound’ and 'upper bound' values to prevent extremely unlikely equilibsia from being
generated.

Actually, the interferometry and polarimetry measurement simulations are not directly
computed by HBT because the electron density profile does not appear in the MHD equilibrium
equation. Rather, the database contains enough information to be able to reconstruct the flux
and magnetic fields along the polarimetry chords. The statistical analysis program (FP) then
randomly selects electron density profile parameters and computes the polarimetry and
interferometry data. The measurements simulated are: I, By, 9 polarimetry channels and 9
interferometry channels. These observable quantities are mapped onto several interesting
plasma parameters by means of the statistical analysis procedure outlined before.
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Error and reliability analysis

The reliability and sensitivity to measurement noise of the mapping mentioned above was
studied. The systematical error introduced by the mapping can be estimated by computing the
plasma parameters from the simulated data in the database using the mapping (F) and
comparing them to the stored values p;. The systematic reconstruction error is defined as

2_ 1 2
(Es}'s) = N_-l—z (Fj(a’u) = Pju) » (4.31)
[+
where o runs over all N simulations. €% is the average systematical error over the data base of
the th parameter.
The statistical error in the computation of p; can be estimated for each equilibrium
separately by
2 1 2
€ =7 T ZB', (Fi(@+€p) - Fi@)", (4.32)

where B runs from 1 to N, (chosen arbitrarily but not too small) and T—:’B is a vector of random
. . .th .
variables. The standard deviation of the i component of T—:’B, o(€jp), is equal to the
. .th . stat - . —

measurement error in the i measurement (see section 4.3.3). € ; isa function of q and
therefore variable over the data base. In table 4.5, es;a' is computed at the centre of the data base
parameter space.

The combined effect of the statistical and systematic error, the total reconstruction error,

containing the effects of both the systematical and the statistical error can be estimated from

(er;c)z = FI'I_I Z (F j(‘_l’u"'?a) - pja)z’ (4.33)
o

where o runs from 1 to N. Approximately, (%) = (€1°)’ + (€%")".

If the spread of a parameter within the database is small, the error €; may also be small
without predicting variations in the parameter correctly. Therefore the quantity €/c is
considered a better indicator for the quality of parameter reconstruction than g; itself.
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Table 4.5: Perturbation analysis; reliability test of inverse mapping

L(A) Ry m) iy, (m) 5  nl10¥) g

Central value 309000.  1.73 0472 00909 401  0.837
Spread, 5;  76400.  0.031 00275 00142 192 025
e 000718  0.0160  0.00971 0.124  0.0766
e 000221  0.0205 00133 0218  0.0439
e 0.00784  0.0271  0.0171  0.263  0.0960
/0, (%) 22.8 58.0 68.4 6.28  29.6
€°"/0; (%) 7.12 74.5 93.7 11.4  17.6
€5°/0; (%) 24.9 98.4  120. 134 370

In table 4.5, the result of this error analysis is presented for some important plasma parameters
The plasma current is measured directly. It is observed that the approximate relationship (e'w)

(t»:sy s) + (esm) holds for the parameters not measured directly. Quantities related to the outer
plasma regions such as a;; are indeterminate (€'°°/ = 100%), as can be expected from this
type of measurement (see section 4.3.4.1). Use of magnetic diagnostics should improve the
latter. Likewise, due to the fact that 8 = (Rpyag — Rgeo)/amin, O is less accurate than ap,;,.
However, the location of the magnetic axis, Ry,,g, can be determined with an accuracy of 0.8
cm; n.q with 2.6 - 10! m™>; and qo with 0.1.

The error analysis presented above is based on the measurement error levels mentioned
in section 4.3.3. These error levels are maximum estimates. Actual measurement error levels
can be slightly smaller and can be estimated from the zero level signals of the interferometry and
polarimetry detectors before the start of the discharge.

The results obtained by FP are only valid for plasma conditions within, or close to, the
subspace of the total plasma state space covered by the data base. If a plasma state lies within
this subspace, we know that the quality of the reconstruction can be estimated by tables such as
table 4.5. A measure for the reliability of the results is therefore:

"i H
Q=x
AP A+ et

Chapter 4 - Function Parametrization 87



where N, is the number of measurements involved, q; is the value of the transformed
measurement i (see section 4.3.4.2), A, is the it eigenvalue of the measurcment dispersion
matrix (i.e. the variance of the i transformed measurement in the database), and E; is the error
that the transformed measurement q; suffers due to measurement errors. Thus, Q is an indicator
for ‘closeness’ of a measurement to the ‘centre’ of the subspace (of the total parameter space)
that is covered by the simulations. If Q < 1, the measurement is well represented within the
database and the accuracy estimates made above apply. If Q > 4, the results obtained by FP are
extrapolations beyond the boundaries of the simulated subspace and no indication of the
accuracy can be given.

4.3.5 Application to TEXTOR data and comparison to Method I

In order to test the validity of the Function Parametrization method, we have analyzed the
temporal evolution of TEXTOR shot # 14214. From the large array of plasma parameters we
have selected the quantities Rgeq, Rpyag. Nep and qg as being indicative of the possibilities of this
reconstruction technique.
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Fig.4.13a The plasma current vs. time for Fig. 4.13b The FP reconstruction quality
TEXTOR discharge # 14214. parameter Q for TEXTOR discharge #
14214.
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Figure 4.13a shows the time trace of the plasma current. There is a non-destructive
disruption at t = 0.79 s, which changes the discharge characteristics from a non-sawtoothing
plasma of relatively high metal content to a cleaner sawtoothing discharge. Figure 4.13b shows
the FP reconstruction quality parameter Q. The reconstruction is valid during the entire shot,
except at the beginning (t < 0.03 s) and at the end (t 2 3 s). This is mainly due to the current
ramp that is likely to cause profile deformations not covered by the chosen parametrization (see
section 4.3.4.2).

174 - p o s e e 1.79 T — ; .
Typical FP
reconstruction

A 1.72+ - error
= ; L77r :
g . E
% 170} : %
! ME
T | 1.75 B w
1.68} Typical FP | f
reconstruction | |
error l| i

1.66 ] | 1 | ! I 1 { :
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Fig.4.14a Time trace of Ry, the location Fig. 4.14b Time trace of R,,,,, the location
of the outer flux surface. The FP error bar of the magnetic axis. The FP error bar
shown is €. shown is €.

Figures 4.14a and b show the time traces of R, and Ry,,; as computed using FP. The
plasma performs a fast inward movement during the disruption. This behaviour is confirmed by
the plasma position signal A that is computed from the Faraday rotation signals using the
method described in [Solt-83] (figure 4.14c). A is the zero crossing of the a(R) profile which
is closely related to Ry, except for a small negative offset due to toroidal effects. An oscillation
of amplitude 1 cm on the R, signal starting at the disruption can be observed. This oscillation
is much less pronounced on the Ry,,,, signal.
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Fig. 4.14c The plasma position signal A that
is computed using the method described in
[Solt-83].
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Fig. 4.15 The time trace of the central
electron density, n,g. The dots indicate
values of n,y as obtained with Method 1 (cf.
Figs. 4.5a-c).

Figure 4.15 shows the time trace of n.g from FP. A steep drop in central electron
density at the disruption is followed by a recovery shortly after. The recovery is not complete.
The negative density spike is reflected on the Shafranov shift, showing a sharp drop followed
by a rapid increase to its original value. The dots indicate n. values obtained by Method I (cf.

Figs. 4.17a-c).
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Figure 4.16 shows the time trace of 1.8 X : . o,

qg. After the start of the discharge, the 16" ]T Typical FP d
. 6 . reconstruction |
signal steeply decreases to a value of around i * ervor 4
0.8, crossing the qy =1 lineatt =032 s 1.4 ; j
(i.. shortly after the plasma current has & 12} | ;
reached its plateau value). Prior to the

disruption the value increases slightly but
stays below 1, although there is no sawtooth
activity. Following the disruption, qq
remains close to 0.8 during the sawtoothing
phase of the discharge.

The reconstructed values of n,g and
qg agree well with the results derived by
conventional analysis. For comparison,
Figs. 4.17a-c show eclectron density
distributions as obtained by both methods
and Figs. 4.17d-f safety factor profiles as
obtained by both methods at three different
times of the same discharge.

Fig.4.16 The time trace of qp. The FP
error bar shown is €°.

4.3.6 Discussion

4.3.6.1 Results for discharge # 14214

The value of qq obtained with FP (q; = 0.8 + 0.1) is the result of a self-consistent method
employing ideal MHD equilibria as the basis for the analysis. Given the plasma model we have
chosen, we are able to devise a xz-test, and reject the hypothesis gy 2 1 with 95% certainty. In
other words, qg = 1 would require a more complex model than the one adopted here. On the
other hand, the data presently available are well reproduced by the present model, and the need
for more complexity is not apparent.

Time traces for several important plasma parameters for the typical discharge # 14214
have been obtained using FP analysis. These traces satisfactorily reproduce the traces obtained
by method I. In particular, the plasma position signal A compares well with Rypag (FP). The
slow oscillations (having a petiod ~ 0.25 s) present in the R, signal but absent in the A and
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profiles from Method I are obtained from spline fits to the

data.

the Ry, signal are due to the fact that R, refers to the plasma boundary, whereas the A and
Rpnag signals refer to the magnetic axis. The oscillation on the R, signal following the
disruption is also seen on the ag;, signal, albeit with reversed sign.

4.3.6.2 Future extensions of the method
The analysis presented in this paper employs a very simple flux surface geometry of shifted
circles. The method can easily be modified to handle more complex geometries (e.g. allowing
for vertical plasma displacement or plasma elongation). In order to do so, however, more
geometrical measurement data are required (e.g. Mirnov coil signals could help determine the
plasma boundary location and shape).

Another assumption made in this analysis is that the electron density profile is a flux
quantity, n, = n/(y), because it provides an important link between measurement data and flux
surface geometry. Therefore this assumption can only be removed if other measurements are
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incorporated that give information on the flux surface guuemetry, sach as Soft X-ray
tomography.

A minor improvement that will be implemented is the replacement of the approximaie
equations (4.27a and b) used in computing the simulated interferometry and polarimetry
detector signals by a ray-tracing algorithm ar:d a model for the optics and electronics in the
detection system. This will not affect any of the results presented here significantly.

The parametrizations of the Il and T profiles used now do not allow for e.g. hollow
profiles. In order to admit more complex profiles in the formalism, it would be necessary 10
increase the spatial resolution of the combined interferometric and polarimetric diagnostics.

The prospects for routine use of the data analysis method presenied here at TEXTOR are
good. The addition of magnetic signals to the analysis is anticipated.
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5. The safety factor and MHD mode astivity

5.1 Introduction

The existence of MHD modes associated with rational surfaces, as mentioned in chapter 2,
affects plasma stability and transport deeply. The observation of such modes is often difficult
for various reasons: there may be several modes present simultaneously, and some or all may
have small amplitudes. Most diagnostics provide spatially averaged data (e.g. line integrals of
the electron density or soft X-ray emission; electron temperatures averaged over certain
measuring volumes) or otherwise composite data (e.g. magnetic fluctuations observed by pick-
up coils due to modes at different rational surfaces), which makes the interpretation of the data
in terms of local mode activity extremely difficult in most cases.

In section 5.2 some of the most basic methods used in the analysis of MHD mode
activity are described. In section 5.3 these methods are applied to observations of mode activity
during the pre-disruption phase of the plasma at RTP. In section 5.4 the observation of
pressure inside island structures at JET is discussed. Finally, section 5.5 reports on MHD
activity during Pellet Enhanced Performance (PEP) discharges at JET. This section is a
reproduction of the paper Shear reversal and MHD activity during Pellet Enhanced Performance
shots in JET [Hugo-91b] in which many diagnostics were used to obtain a consistent picture of
the local mode activity. The observed modes are linked with rational surfaces, and thus the
observations also led 1o a reassessment of the magnetic equilibrium. The JET shots that were
investigated were found to have negative shear in the central region, i.c. s =q£ p < 0, in
agreement with earlier theoretical predictions [Huys-91).

5.2 Methods used in the analysis of MHD activity
MHD modes or magnetic islands are helical structures associated with rational g-surfaces (see
chapter 2). A primary point of interest in the analysis of MHD modes is to establish the
relationship between the electron temperature fluctuation 8T,, the electron density fluctuation
dn, and the current fluctuation 31 inside the island (at the O-point) with respect to the situation
outside the island (at the X-point), as this provides insight into the nature of the islands.
Depending on the sign of the shear, the incremental current 3] flowing in the island O-
point parallel to the magnetic field on the flux surface is positive or negative [Rebu-90]. If, for
simplicity, one considers an equilibrium with circular concentric nested flux surfaces in
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cylindrical approximation, the incremental current can be expressed as:

8= 38l , sin(m@ — N — Y o — O 1) (P = Ppn.p) (5.1)

where Ol , is the incremental current associated with the (m,n) island, X, , is the phase of
island chains on separate flux surfaces and can be taken equal to zero if just one mode is
described, and ®,, ,, is the rotation velocity of the island, which need not be constant in time. If
the shear is positive at the rational surface q = m/n, 8l  is opposite to the main current L in
the island O-point; otherwise it is in the same direction. Due to the helical symmetry of the
structure, it is impossible to distinguish between poloidal and toroidal rotation for modes with
m,n > 0 using the magnetic pick-up coils only. The Kronecker d-function 8(p — p,, ) is an
approximation of the radial current localization on the flux surface; in reality the island width is
finite [Bate-80].
The effect of such rotating helical structures on poloidal field pick-up coils is

Bo(0,0,) = DA 1 nOmn COS(MO = N6 — Xy — Oy ) (5.2)

where the amplitude A, is related to the incremental current 81, ,, in cylindrical
approximation, by

Ko OL
g =L Pn (5.3)
4npg | PB

where pg is the radial position of the poloidal field pick-up coil. The spatial dependence of the
observed amplitude generally prevents the observation of high m modes with the magnetic
diagnostic. In particular, the pick-up coils are often situated at such distances from the plasma
that the term between brackets in Eq. (5.3) is of the order of % or smaller for most modes, and
thus the observed amplitude of the modes decreases approximately exponentially with m.

In Eq. (5.2) the term A, (@, , appears because of the time derivative. It is possible,
however, to determine the amplitude of the oscillating quantity By = Bg — <Bg> (here <>
denotes averaging in time over a few periods of oscillation), which is determined by A, ;, only.
In particular, if a single mode dominates the magnetic field oscillation or if simultancous modes
can be distinguished by means of their frequencies, Eq. (5.3) allows evaluation of the
incremental current 31 if the radial position py, ,, of the mode is known.

The expression for the radial island width, w, is given in terms of the radial field
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perturbation at the rational surface [Wess-87]:

1
Pq ﬁp 2
W=4(m = Be) , (5.42)

where ﬁp is the amplitude of the radial field perturbation due to the island. Using the model for
the current distribution given by Eq. (5.1) this can be rewritten in terms of the current flowing
in the island:

4 (Ko q ) | 1

0 m,n |2
= —— ‘4
W= ( B, ) (5.4b)

in which all quantities are evaluated at the rational surface.

It is possible to separate the poloidal and toroidal mode number contributions to the
observed oscillations by means of a Fourier analysis with respect to the angles 0 or ¢ of the
pick-up coils. Define

2n

F- = Lof Bq(0,0,t) cos(m8) de,
(Y
2n
F’ = lof B0(0,0.1) sin(me@) d@ (5.5)
T

In practice the integrals (5.5) are replaced by sums over the pick-up coils. These Fourier
coefficients can be combined to give

\/ F)? + (Fo)*= Y ApaOmn=Sn (5.6)

i.e. the combined amplitude of all modes of poloidal mode number m. A similar procedure can
be applied to a toroidal set of pick-up coils in order to obtain F; and F;, from which the toroidal
mode amplitude S, can be computed.

As mentioned above, these derivations are made for a simplified circular, concentric flux
surface geometry in cylindrical approximation. A more detailed analysis would include the
effects of an eccentric plasma position, the Shafranov shift, the non-circularity of the plasma
boundary and the toroidal effect [Harl-89]. The simple procedure outlined above already gives
quite satisfactory results for modes of low poloidal mode number m at RTP, but is inadequate
for poloidal mode determination in the D-shaped JET plasmas. In this case more advanced
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techniques are required, such as Singular Value Decomposition [Smeu-91]. At JET, hardware
combinations of poloidal pick-up coils in a toroidal set provide signals S,,, for which this type
of analysis is valid despite the D-shape. At RTP no toroidal set of pick-up coils is available.

Another important analysis tool is frequency analysis. Standard Fourier methods yield
frequency spectra of a single pick-up coil. A peak in the spectrum should correspond to a
certain mode number. In particular, with the assumption that the plasma rotation is dominantly
toroidal, in agreement with experimental observation [Brau-83], the peaks at different
frequencies, f;,, can only be due to modes with different toroidal mode number n. The toroidal
rotation velocity profile as a function of minor radius is roughly Gaussian with the peak in the
centre. The frequency of an observed mode f;, is related to the average toroidal plasma rotation
frequency: f;, = <v4>/(21R ). Even though the plasma rotation is inhomogeneous, it is
observed very often that modes at different rational surfaces couple, implying that the magnetic
mode-structures do not follow the local plasma rotation exactly [Brau-83]; for coupled modes
O = O or f; = nf;. Thus the frequency spectrum provides a diagnostic for the toroidal mode
numbers involved.

Often it is observed that plasma rotation is not constant in time: the plasma is either
spinning up or down (as in the case of modelocking). Then a 'binning’ procedure in which the
signal is subdivided into short time sections, for each of which a spectrum is made, provides
insight into the time development of the dominant frequencies.

The modes at different radial positions can only be distinguished by means of
diagnostics that have sufficiently high spatial resolution such that local measurements of
quantities that are affected by the MHD modes can be made, e.g. ECE temperature
measurements. In addition, line integral measurements from e.g. interferometers or soft X-ray
cameras can provide local information. These measurements, however, are more difficult to
interpret due to the deconvolution (Abel-inversion) that is needed.

5.3 MHD activity and density limit disruptions at RTP
MHD behaviour of plasmas prior to density limit disruptions has previously been reported in
[Wess-89] for JET. In this section observations with a number of fast diagnostics of similar
disruptions in RTP are presented.

Fig. 5.1 demonstrates the behaviour of a typical density limit disruption (shot
R19900724.006). Fig. 5.1a shows time traces of the plasma current and the horizontal position
of the plasma. Fig. 5.1b shows the magnetic activity for m = 1, 2 and 3. After an initial MHD
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Fig.5.1a Plasma current and horizontal plasma position for discharge R19900724.006. At
t = 28 ms, a disruption occurs.

quiescent phase during the current rise, MHD activity (m = 2) appears at 15 ms. A sequence of
minor m = 2 disruptions sets in at 20 ms, leading to a major disruption at 28 ms. Each minor
disruption creates an inward movement of the plasma, after which the plasma recovers and
moves outward again. The fast inward movement can be seen as a spike on the m = 1 signal.
The explanation of this type of behaviour is thought to be as follows [Wess-89]. Due to
increased radiation of impurity ions at high density, the edge region of the plasma cools down.
This cooling reduces the current density in the edge, thus creating a current profile with steep
gradients inside and near the q = 2 surface, which strongly destabilizes the (m,n) = (2,1) mode.
The violent m = 2 mode redistributes the plasma energy around the q = 2 surface: the
temperature inside the surface is lowered while the temperature outside the surface is increased.
As a consequence, the current density profile is modified and the gradients are reduced, such
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Fig. 5.1b Magnetic activity S,, form = 1, 2 and 3. A sequence of minor disruptions occurs
between 20 ms and 28 ms.

that the m = 2 mode is stabilized. The cooling in the edge region continues, however, and a
following minor disruption develops. The sequence of minor disruptions is followed by a
major disruption when an m = 1 mode is destabilized.

Due to the sudden reduction of the kinetic energy content of the plasma and the
flattening of the current profile during the minor disruptions, the Shafranov parameter A = B, +
%Ii drops. The parameter B, is the ratio of the averaged kinetic pressure of the plasma and the
magnetic field pressure exerted by the poloidal magnetic field at the edge (see Appendix). The
normalized internal induction J; is a measure for the peaking of the current density profile. The
vertical magnetic field required to keep the plasma at its position R = R, is
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Fig.5.2a Plasma current and horizonsal plasma position for discharge R19900724.005. At
t = 83 ms, a disruption occurs.

approximately [Frei-87]:
p=tle (4 2.0 83&29), (5.79)
47R e, 2 Amin

from which it can be seen that, since the vertical field B, and the plasma current I, are
approximately constant on the fast timescale of the disruption,

AR
Roo= 24 SR (5.7b)
g0 A _ 3 L |n —EeO
2 8min

The change in the Shafranov parameter, AA, is negative while the denominator on the right-
hand side is positive. Thus the inward movement of the plasma AR, can be understood.
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Fig.52b Magnetic activity S,, for m = 1, 2 and 3. A strong m = 2 mode sets in at
t =40 ms.

Eq. (5.7b) allows an estimate of AA to be made. For the minor disruption at t = 20 ms AR, =
—4.5 mm and R, = 71.3 cm (Fig. 5.1a). Taking a.;;, = 17.5 cm and A = 1 (as confirmed by
Function Parametrization, see chapter 4) AA = -0.013, or 1.3% of A.

Fig. 5.2 shows an example of a density limit disruption without the prior sequence of
minor disruptions (shot R19900724.005). Fig. 5.2a shows the plasma current and the
horizontal plasma position. Fig. 5.2b shows the magnetic activity for m = 1, 2 and 3. Strong
MHD activity (m = 2) sets in at 40 ms and causes an inward movement of the plasma, from
which it can be deduced that it is accompanied by a reduction of A. Fig. 5.2c shows a
frequency - vs - time plot of a vertical interferometer channel at R = 0.72 m. A frequency
analysis of a pick-up coil yields an identical picture. It can be seen that the m = 2 mode, starting
at 40 ms at 10 kHz, slows down to 6 kHz at 80 ms, at which time the major disruption occurs.
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Fig. 5.2c Frequency - vs - time plot of the signal of the 2 mum interferometer, showing the
slowing down of the m = 2 mode. For this analysis the signal was divided into 35 time sections
of 2.5 ms, and for each section a spectrum was made.

The current in the m = 2 island is computed using Eq. (5.3). The relevant quantities are
evaluated at t = 50 ms (m = 2 mode activity signal S, = 30 Ts'; plasma rotation frequency f=
10 kHz; pick-up coils at pg = 0.213 m; plasma minor radius an,;, = 0.175 m; major radius R,
= 0.72 m; toroidal magnetic field By = 1.9 T; plasma current I, = 100 kA). Assuming that the
only mode contributing to the S, signal is the (m,n) = (2,1) mode, the observed mode
amplitude A, ; = S,/(2nf) = 0.48 mT. The safety factor at the plasma boundary is gy = 4.0
(see Appendix). Assuming that nearly all current flows within the q = 2 surface (in agreement
with the destabilization of the q = 2 mode, see the argument above) the g-profile is parabolic
outside this surface: q(p) = qcy](p/amin)2 (p 2 pa,1) so the q = 2 surface is at p,; = 0.12 m.
Thus an estimate of the current flowing in the island is: 81, ; = 46.4-p2'_ ? = 3.2 kA.

Chapter 5 - The safety factor and MHD mode activity 103



120 ] T T T

Plasma current

]
| L‘V_’——‘
80 100

Time (ms)

Fig.53a Plasma current for discharge R19900718.013. At t = 73 ms, a disruption occurs.

The radial width of the m = 2 island is computed as follows. If the q-profile is assumed
1o be parabolic as above, then the derivative q' = dq/0p = 31 m™! at p = 0.12 m. The local
poloidal magnetic field is found using Eq. (2.28): q = pBy/(RBg), so Bg(pz,;) =0.16 T. Using
31, , as above and Eq. (5.4) it follows that w = 7.41-10'4-p2712= 5.1 cm.

This is in agreement with measurements taken in similar discharges with a multichannel
interferometer that indicate that the typical width of comparable m = 2 islands is 4 cm [Lamm-
91]. It should be noted that the observed island width can be smaller than the width computed
from the magnetic measurements due to the presence of a stochastic layer around the island
separatrix.

Fig. 5.3 shows another example of a density limit disruption (shot R19900718.013).
Fig. 5.3a shows a time trace of the plasma current, in which several ‘humps' can be
recognized. The plasma ends at 73 ms with a major disruption. Fig. 5.3b shows the magnetic
activity for m = 1, 2 and 3. At 12 ms a mode of unknown character is destabilized during
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Fig. 5.3b Magretic activity S,, form = 1,2 and 3. A strong m = 2 mode sets in at t = 42 ms.
At 68 ms a series of minor disruptions starts, preceding the major disruption.

the current ramp-up and the induced plasma motion shows up in the m = 1 signal as a spike,
while the plasma current shows a temporary increase due to the decrease in plasma inductance.
At 42 ms a m = 2 mode is destabilized, again accompanied by a temporary increase in plasma
current, that grows and at 68 ms leads to a series of m = 2 minor disruptions, terminated at 73
ms by a major disruption. Fig. 5.3c shows a plot of frequency - vs - time of coil Bg(0) on the
outboard side, showing that the m = 2 mode slows down from 10 kHz to 5 kHz immediately
prior to the disruption. This behaviour has also been observed in other tokamaks [Wess-89],
where the slowing-down sometimes progresses to a complete standstill ‘modelock").

Finally, density limit disruptions without any significant MHD precursor activity have
also been seen. The general picture emerging from the reported observations seems to confirm
the reported density limit behaviour [Wess-89] in detail.
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Fig.5.3c Frequency - vs - time plot of the signal of pick-up coil Bg(0), showing the slowing
down of the m = 2 mode. For this analysis the signal was divided into 35 time sections of 2.5

ms, and for each section a spectrum was made.
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5.4 Observation of pressure inside magnetic islands at JET

At JET, magnetic modes are sometimes observed to rotate slowly with a frequency of around
100 Hz. The density oscillations associated with these modes are measured with the one-
channel interferomeser sampling at 1 kHz [Fess-87). These data are correlated with
simultaneous measurements from the magnetic pick-up coils, the ECE polychromator and the
soft X-ray cameras. The ECE polychromator measures the temperature at discrete points along
a horizontal chord in the midplane and the interferometer measures the line-integral density
along a vertical chord at R = 3.142 m in the same octant (octant 7, see section 5.5).

Fig. 5.4 compares the measured oscillations of the electron temperasure, density and
poloidal magnetic field (shot 23085). The electron temperature trace displays the slow mode
and a fast mode. Analysis of magnetic and Soft X-ray data shows that the slow mode has (m,n)
= (2,1) mode numbers and that it rotates in the direction of the electron diamagnetic drift.
Taking account of the symmetry of the mode (m=2) and the poloidal position of the
polychromator and the interferometer, the electron temperature and density oscillations are in
phase. The poloidal magnetic field oscillations measured by pick-up coils above and below the
midplane show that B, is minimal in the midplane in octant 4 when the electron temperature in
octant 7 is close to its maximum (the toroidal separation between the diagnostics is 147°). Due
to the toroidal symmetry of the mode (n=1) the poloidal magnetic field and the temperature
oscillations are in phase. The oscillations are therefore associated with a rotating island with an
O-point corresponding to a minimum of T, and n,, assuming that the shear is positive. The
pressure is lower at the island O-point than at its X-point by between 3 and 10%.

This conclusion is at variance with observations at RTP where a strong enhancement of
electron density inside the islands is observed [Lamm-91]. Similarly, the m = 1 ‘snake’ at JET
also displays a strong enhancement of density inside the island, while the temperature decrease
is moderate. All observations in JET and RTP agree, however, that with positive shear the
temperature inside the island is diminisked in accordance with the necessity to have 81, ,
opposite to the main plasma current to sustain the island. Apparently, the electron pressurs
increment 8p, in the island can be either positive or negative depending on the ontogenesis of
the island.
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Fig. 54 Time traces displaying the correlation between the ECE electron temperature
measured at R = 3.56 m by the polychromator, the line integrated electron density (from the 2
mm interferometer) and two poloidal field pick-up coils for a slowly rotating (2,1) mode after
termination of the PEP phase (shot 23085).
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5.5.1 Abstract

Analysis of MHD activity in Pellet Enhanced Performance (PEP) pulses is used to determine
the position of rational surfaces associated with the safety factor q. This gives evidence for
negative shear in the central region of the plasma. The plasma equilibrium calculated from the
measured ¢ values yields a Shafranov shift in reasonable agreement with the experimental value
of about 0.2 m. The corresponding current profile has two large off-axis maxima in agreement
with the bootstrap current calculated from the electron temperature and density measurements.
A transport simulation shows that the bootstrap current is driven by the steep density gradient,
which results from improved confinement in the plasma core where the shear is negative.
During the PEP phase (m,n) = (1,1) fast MHD events are correlated with collapses in the
neutron rate. The dominant mode preceding these events usually is n = 3, whereas the mode
following them is dominantly n = 2. Toroidal linear MHD stability calculations assuming a non-
monotonic g-profile with an off-axis minimum decreasing from above to below 1 describe this
sequence of modes (n = 3, 1, 2), but always give a larger growth rate for the n = 1 mode than
for the n = 2 mode. This large growth rate is due to the high central poloidal beta of 1.5
observed in the PEP pulses. Finally, a rotating (m,n) = (1,1) mode is observed as a hot spot
with a ballooning character on the low field side. The hot spot has some of the properties of a
'hot’ island consistent with the presence of a region of negative shear.
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5.5.2 Introduction

A regime of enhanced performance in tokamaks can be accessed by deep pellet injection leading
to strongly peaked density profiles in centrally heated plasmas, as first proposed in [Furt-86,
Rebu-86a, Schm-86]. This regime has been achieved in JET by injection of deuterium pellets
into L-mode limiter ICRF heated plasmas [Schm-88]: it is known as the Pellet-Enhanced
Performance (PEP) mode. Similar results, but with neutral beam heating, have been obtained in
DIII [Seng-85], JT60 [Naga-89] and JFT 2-M [Odaj-86].

Compared to similar non-PEP pulses the PEP mode is characterized by a substantial
increase of the neutron rate (by about 5 times), a very strong peaking of the electron density n,
and kinetic pressure near the plasma centre and a relatively small increase of the global energy
confinement time Tg (by about 20%). The PEP mode is a transient phenomenon, lasting
typically 1 to 2 s. It is terminated by a rapid loss of central pressure, often associated with
MHD phenomena. It has been suggested [Schm-88] that the abrupt termination of the PEP
mode could be associated with the presence of an unstable non-monotonic profile of the safety
factor g. The negative shear region in the plasma core is thought to be created by a substantial
bootstrap current. The central electron and ion thermal conductivities derived from the
experimental data are reduced by a factor 2 - 3 with respect to the usual anomalous values
[Taro-88]. This reduction of transport parameters could be due to the existence of negative
shear in the plasma centre [Rebu-88).

More recently, in JET the PEP mode has been combined with an H-mode [Tubb-91,
Kups-91]. These shots have produced large values of thermonuclear neutron rate of
approximately 10'® 5! and fusion product ng(0)T,(0)tg = 7- 10%° m3 keV s in plasmas having
nearly the same electron and ion temperatures (T, = T; = 10 keV). The projected deuterium-
tritium fusion rate in JET is much larger in the PEP mode than in non-enhanced plasmas. In
next-step devices, the transient PEP-H mode could be used to ignite the plasma.

It is therefore of great interest to have a better understanding of the MHD behaviour,
plasma equilibrium and transport to improve the performance during the PEP phase. This paper
reports on the analysis of MHD activity measured by several diagnostics at a high sampling rate
in the recent PEP-H mode dischargs. Section 5.5.3 gives a brief description of the diagnostics
and of the data analysis methods involved. Section 5.5.4 discusses the experimental results and
their theoretical interpretation and conclusions are given in section 5.5.5. A typical PEP-H
mode pulse is described in section 5.5.4.1 and the MHD behaviour during the PEP phase is
discussed in section 5.5.4.2. The position of rational g-surfaces obtained from MHD mode
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analysis provides experimental evidence for negative shear in the plasma core and this is
presented in section 5.5.4.3. A PEP plasma is simulated with a predictive time dependent 1-D
transport code in section 5.5.4.4. The MHD modes observed during the PEP phase are
compared with the predictions of two toroidal linear MHD codes in section 5.5.4.5. In section
5.5.4.6 the topology of a rotating (m,n) = (1,1) mode is analyzed in detail in the region of
negative shear.

5.5.3 Diagnostics and data analysis

5.5.3.1 Diagnostics
The study of MHD activity in JET involves many diagnostics which are located at different
poloidal and toroidal positions. The JET vacuum vesse! consists of 8 octants, numbered from 1
to 8 in the counterclockwise direction as seen from the top. The following diagnostics have
been used in these studies:

Magnetic diagnostic: the poloidal field is measured by a poloidal set of 18 pick-up coils
in octant 4 and a toroidal set of 8 such coils located on the outboard side above the midplane
inside the vacuum vesse' Each coil has a frequency cutoff at 10 kHz with a slope of 6 dB per
octave. In addition, a hardware combination of pick-up coils at different toroidal locations
allows measurement of the toroidal mode number n of rotating magnetic modes upton=4.

Polychromator: a 12-channel grating polychromator measures the electron temperature
locally from the 2™ harmonic extraordinary mode clectron cyclotron emission (ECE) on a
horizontal chord in the midplane in octant 7 [Tubb-85]. The spatial resolution is approximately
0.06 m radially and 0.15 m in the transverse direction.

Radiometer: the electron temperature is also measured by a 44-channel microwave
heterodyne radiometer from the 1** harmonic ordinary mode ECE on a horizontal chord in the
midplane in octant 7 [Port-91]. This emission may suffer from cutoff at the plasma frequency in
high density pulses. Its spatial resolution is approximately 0.02 m radially and 0.15 m in the
transverse direction.

Soft X-rays: the soft X-ray diagnostic is equipped with a 38-channel vertical camera and
a 62-channel horizontal camera in octant 2 and 16 toroidal diodes (4 of eachinoctants 1, 3, 5
and 6 at various elevations above the midplane) [Edwa-86]. The transverse resolution is 0.07 m
in the midplane for the vertical cameras.
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LIDAR: the LIDAR time-of-flight Thomson scattering diagnostic measures the electron
density and temperature profiles every 1.2 s along a horizontal chord in the mid-plane of octant
5 [Salz-88].

5.5.3.2 Data analysis and correlation between diagnostics

It is difficult to determine the poloidal mode number m from the poloidal set of pick-up coils,
because the signals are affected by the D-shape of the vacuum vessel, the shape of the plasma
for double null discharges and the plasma position. In addition, the pick-up coils measure the
combined effects of all modes present in the plasma with a weight which depends on their
relative amplitude, radial position and mode number. In the PEP pulses, most of the MHD
activity takes place in the central region of the plasma, making the mode number analysis for
these central modes very difficult.

The soft X-ray diagnostic provides a powerful tool for local mode number
determination. From the toroidal cameras in combination with a selection of horizontal channels
it it possible to determine the toroidal mode numbers up to n = 4. Analysis of the horizontal and
vertical camera raw data can yield mode numbers up to m = 4. In addition, a static
2-dimensional tomographic reconstruction technique can distinguish between poloidal mode
numbers m =0, 1 and 2 [Gran-88]. If m = 0 (m = 1) can be excluded, m =4 (m = 3) can be
assumed taking into account the symmetries appearing in both cameras and also the properties
of the g-profile. A single-camera (vertical or horizontal) rotational tomographic reconstruction
technique is also available, which can handle mode numbers up to m = 4 [Smeu-83].

In correlating the data measured by the various diagnostics, care has been taken to take
proper account of their relative timing and position. In the present study the direction of the
toroidal magnetic field is counterclockwise and the plasma current is in the clockwise direction
as seen from the top of the vacuum vessel, which determines the helicity of the magnetic field.
Knowledge of the direction of rotation, frequency and mode numbers of an observed mode is
essential for the correlation. For diagnostics located in the midplane it is only necessary to
know the toroidal mode number, assuming that the plasma rotation is purely toroidal.

5.5.4 Results and discussion

5.5.4.1 A typical PEP-H mode shot
The PEP-H mode pulses investigated here are obtained by injecting one or several pellets into
double null plasmas during the current rise before the g-profile has fully evolved. Fig. 5.5
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Fig. 55 Time traces of some indicative quantities of a typical PEP plasma. Shown are: (a)
the ICRH input power (there is no NBI in this puise); (L) the central electron temperature from
the ECE Michelson interferometer and the central ion temperature from He-like nickel radiation
line-broadening; (c) the central and volume-average electron density from the far-infrared
interferometer; (d) the D, emission measured along a vertical chord viewing near the X-point
region; (e) the total kinetic plasma energy derived from the diamagnetic loop measurements; (f)
the total neutron rate; (g) the n = 1 magnetic activity; and (h) the soft X-ray centroid radius
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closely related to the magnetic axis radius.
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shows the time variation of signals characterizing a typical PEP-H mode discharge (Pulse No.
23107). The toroidal magnetic field is 2.9 T. The plasma current reaches a constant value of 3.6
MA at 6.0 5. The X-points are formed at 4.0 s, marked by an increase in the D, signal.
Deuterium pellets are injected at 4.75 s (2.7 mm) and at 5.0 s (4.0 mm), causing a decrease in
electron temperature T, and a sharp increase in the central density n.(0) and the D, signal. The
4mm pellet causes a strong peaking of the density profile indicating the beginning of the PEP
mode as can be seen in Fig.5.5c. Subsequently the electron density decreases gradually. At 5.5
s, the ICRF heating is ramped up to 9 MW. In this particular pulse NBI heating is not applied.
During the PEP-L phase, the electron and ion temperatures and the neutron rate increase sharply
from the moment ICRF heating is applied. At 5.9 s there is an L to H transition, indicated by a
slight decrease in the D, signal. During the PEP-H phase the neutron rate reaches a peak value
of 6-10" 5. A1 6.35 s a central n = 1 MHD event terminates both the PEP phase and the H-
mode and the plasma energy content W, decreases sharply. It should be noted that in many
pulses the PEP phase terminates before the end of the H-mode. The PEP phase always takes
place well before the onset of the ordinary sawtooth activity (about 8 s in these shots). The H to
L transition can be seen from an increase in the D, signal and a drop in <n.>. The PEP phase
can be diagnosed by the evolution of the soft X-ray centroid radius, Rgxg, which is closely
related to the magnetic axis radius, R,,,. Rgxp is the position of the maximum of the soft X-
ray emission profile in the midplane as determined by means of the static tomography
technique. Rgxp is observed to move strongly outward after starting the ICRF heating due to
the build-up of central pressure caused by the central temperature increase at high density. At
6.35 s, a sudden inward movement is observed comresponding to the termination of the PEP
phase.

5.54.2 MHD behaviour during the PEP phase.

During the PEP phase, collapses in the neutron rate occur that are often correlated with fast
MHD events. From the soft X-ray measurements most of these events are found to have (m,n)
= (1,1) mode numbers. The n = 1 mode number is confirmed by the magnetic pick-up coils.
From the soft X-ray and the magnetic diagnostics it is found that rotating modes preceding the
(1,1) event by several tens of ms generally have an n = 3 mode number. In some cases, their
poloidal mode number is determined to be m = 4 from soft X-ray emission analysis. Often a
fast-growing rotating n = 2 mode starts already in the precursor phase of the fast event with a
frequency twice that of the n = 1 mode, indicating that the n = 2 mode arises as a non-lincar
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consequence of the n = 1 mode [Smen-91]. After the fast event, generally the n = 1 mode
amplitude decreases strongly and a dominant n =2 mode is observed with a weak n = 3 mode.
Fig. 5.6 shows a typical example of this behaviour observed in Pulse No. 23100. Impurity
radiation at the plasma edge is enhanced by the crash. The resulting impurity influx may lead to
a long-term dilution of deuterium in the plasma core and a decrease of the neutron rate. Note
that the central ion (from charge exchange measurements) and electron temperatures remain
approximately constant during these crashes, indicating that the D-D cross section is not
affected. :

5.54.3 Determination of the g-profile

Fig. 5.7 shows the behaviour of the electron temperature T, at various positions in the plasma
as seen by the polychromator (Pulse No. 23100). As discussed in the previous section, the fast
event at 6.542 s is an n = 1 mode, which is preceded by a dominant n = 3 mode and followed
by dominant n = 2 modes. The (1,1) fast MHD event does not affect the central electron
temperature. Note the non-sinusoidal character of the oscillations after this event and
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the slight phase shift between the channels at R=3.56 and R=3.64 m, suggesting that distinct
but coupled modes (on different rational surfaces) may be involved. There is an error of about
0.1 m in the absolute value of the major radii corresponding to the polychromator channel
positions. This is due to the uncertainty in calculating the total magnetic field for these plasmas
with a large bootstrap current and a total current which has not reached a steady state (see
below). The n = 2 modes last about 200 ms until a fast MHD event terminates the PEP phase.
The electron temperature oscillations are in phase with the poloidal field oscillations for the n =
3 and n =2 modes as expected for rotating magnetic islands.

Fast Soft X-ray data (sampling at 200 kHz) allow determination of the mode numbers of
the oscillations after the n = 1 event. The soft X-ray centroid radius, Rgxg = 3.30 m, indicates a
large Shafranov shift. Detailed analysis reveals a (3,2) mode of small amplitude atr =0.14 m
and a (2,2) mode of large amplitude at r = 0.25 m. The effective relative amplitudes of the
oscillations are plotted as a function of minor radius in Fig. 5.8. Taking into account the
variation in the measured Shafranov shift, the rational surfaces are believed to be at R = 3.15
and 3.42 m for the (3,2) mode and R = 3.02 and 3.52 m for the (2,2) mode. This shows that
the shear is negative in the central region of the plasma. The error in the allocation of the
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maximum amplitude of a mode is typically the spacing between two diodes, which is of the

order of 0.05 m. The radial displacement of the (2,2) and (3,2) modes has a maximum of about

0.05 m and extends over around 0.15 m of the plasma.

The positions of the rational surfaces deduced from the soft X-ray measurements after
the n = 1 event are used as additional constraints on the plasma equilibrium calculated by the
IDENTD code [Blum-90]. The equilibrium identification is done by minimizing a cost function
that evaluates the deviation between simulated and observed measurements with the constraint
of the Grad-Shafranov equation. IDENTD accommodates measurements of 14 flux loops and
18 pick-up coils at the vacuum vessel, the plasma current, the diamagnetic signal, the total
pressure and safety factor at discrete points. The magnetic flux at the position of the flux loops
is used directly as a boundary condition for the Grad-Shafranov equation and the total plasma
current L, is equal to the surface integral of the current density. All other quantities are fitted via
minimization of the cost function. The total pressure is approximated by p = ap, with the
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Fig. 5.9 Computed and measured profiles
Jor Pulse No. 23100 at t = 6.605 s: (a) a q-
profile calculated using IDENTD and rational
g-values determined from soft X-ray data
analysis; (b) current density profile,
averaged over the flux surfaces, obtaincd
Jrom IDENTD and bootstrap current
contribution to the total current. The
indicated shaded area reflects the uncertainty
in the bootstrap current calculated from the
local gradients of the measured LIDAR
density and temperature profiles; (c) LIDAR
electron density profile; (d) LIDAR electron
pressure profile.

constant factor o of the order of 2 and p, is
the electron pressure from LIDAR (see Fig.
5.9d). The electron temperature T, is
approximately equal to the ion temperature
T; as shown in Fig. 5.5. The remaining
uncertainty on the pressure is taken into
account by choosing a low weight in the
cost function.

The calculated g-profile is shown in
Fig. 5.9a. The discrepancy between the q-
profile and the positions of the rational
surfaces deduced from the observed mode
activity on the high field side is partly due to
a convergence problem of the algorithm
when an attempt is made to enforce better

agreement with the measurements. In addition, the flux surfaces are assumed to be concentric
ellipses (i.e. in-out symmetric) in the soft X-ray reconstruction used to determine the island
positions, whereas the g-profile is asymmetric because of the large Shafranov shift. The soft X-
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ray centroid radius is Rgxg = 3.30 m and the position of the maximum in the electron pressure
is at R = 3.28 m (see Fig. 5.9d), both comparing fairly well with the magnetic axis radius
calculated by IDENTD (R = 3.21 m).

The current density j obtained from IDENTD computations is shown in Fig.5.9b. Note
that the central current density is too low by about 20% from the value of q(0) shown in Fig.
5.9a: this is due to a numerical problem of the equilibrium code, when computing strongly
hollow j-profiles. The innermost ‘twin peaks' of the j-profile are correlated with the steep
density gradients in the central region (see Fig. 5.9c). Fig. 5.9b also shows the bootstrap
current contribution to the total current as computed from the LIDAR data [Hirs-88]. The radial
position and amplitude of the calculated bootstrap current matches the deviation of the
reconstructed current profile from a roughly parabolic profile having the same central current
density.

5.5.44 Transport simulation of the PEP mode

The evolution of temperature, current and density profiles of Pulse No. 23100 has been
simulated using a predictive time dependent 1-D transport code [Bouc-91] based on the critical
temperature gradient model of plasma transport [Rebu-88]. The simulations provide insight into
the formation of the region of negative shear and into the consequences for transport within this
region.

The computation starts just before the injection of the first pellet at 4.75 s. A large
region (about 40% of the minor radius) with slightly negative shear is created after the injection
of the second and last pellet at 5 s by a combination of three factors: (i) the broad current and g-
profiles in the early phase; (ii) the transient inversion of the temperature profile and
consequently of the current profile by the pellet injection; (iii) a small bootstrap current driven
mainly by the density gradient. The region of negative shear is maintained during the 1 second
of ohmic heating and weak ICRF heating (about 1.5 MW). After the onset of additional power
(10 MW ICRH and 2.5 MW NBI), the bootstrap current increases strongly producing a more
hollow g-profile. Fig. 5.10a compares the simulated g-profile at 6.6 s with that obtained from
IDENTD computations: there is a reasonable agreement, bearing in mind that the transport code
is 1-D, with nested circular flux surfaces that take little account of elongation or shifts in the
magnetic axis, which are considered elsewhere [Tar0-91].

The calculated temperature and density profiles are in good agreement with the LIDAR
profiles at 6.6 s (see Fig. 5.10b) and time variations of the central electron temperature (Fig.
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Fig. 5.10 Results of a PEP pulse simulation obtained with a time dependent 1-D transport
code (solid curves). (a) The dashed curve is the q-profile calculated by IDENTD. (b) The dotted
curves are the electron temperature T, and density n, profiles measured by LIDAR. (c) The
transport is reduced within the region of negative shear as shown by the lower thermal
conductivities. (d) The dotted line is the central electron temperature T,(0) measured by the
Michelson interferometer as a function of time. (e) The dotted curve is the experimental neutron

yield versus time.
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5.10d) and neutron yield (Fig. 5.10e) are also well reproduced. In line with e critical electron
temperature gradient model, it is necessary to reduce ion heat conduction and particle transpor
to neoclassical levels within the region of reversed shear. It is also necessary to reduce the

electron transport to about 0.5 to 1 times ion neoclassical levels, that is, comparable 1o electron
neoclassical levels, if poloidal variations in the electric potential are important |Stri-91]. The

reduced transport inside the region of negative shear is shown in Fig. 5.10c by the lower

thermal conductivities. Outside this region experimental data are well represented by the

anomalous transport of the critical electron temperature gradient model. The conclusions of this
simulation are similar to those obtained previously for other discharges with a predictive 12l D

equilibrium-transport code | Taro-91].

5.54.5
To see how the n = 3,12
sequence of modes observed
in shot 23100 compares with
theory, a series of toroidal
MHD calculations have been
performed. For these
calculations the resistive linear
MHD code FAR [Char-90] is
used. The equilibria are
specified by defining the
plasma boundary shape and
the pressure and q profiles.
The plasma boundary shape,
determined from external
magnetic measurements, has
an elongation of 1.67 and a
triangularity of 0.27. The
pressure profile is obtained
from the LIDAR data and its
magnitude is adjusted to match
the measured diamagnetic
pressure to take into account

Mode stability computation
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Fig.5.11 The growth rate of instabilities with toroidal
maode numbers n = 1, 2 and 3, computed,” r a range of q-
profiles. Non-monotonic q-profiles are used with a q on
axis of 1.6 and an off-axis minimum q,,;, at rla = 0.3. An
example of some of these q-profiles is shown in the inset.
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the ion contribution. The average B, is 0.29 during the n = 3 activity and is 0.38 during the n =
1 and 2 activity. The g-profile is constrained to match the experimental total plasma current,
which essentially determines the edge q. The central  is fixed at 1.6 and a sequence of
q-profiles are considered ranging from slightly to strongly non-monotonic, with a minimum
Qmin at 1/a = 0.3, as shown in the inset in Fig. 5.11. This series of q-profiles is consistent with
the experimental data discussed in section 5.5.4.3: the soft X-ray analysis indicates that the
q-profile is inverted with q = 3/2 and q = 1 rational surfaces at r = 0.14 m and 0.25 m
respectively after the fast (m,n) = (1,1) MHD event; in addition, the off-axis minimum of q is
well above 1 just after pellet injection and decreases slowly towards a value below 1 as shown
by the change from (m,n) = (4,3) to (2,2) activity. The results of the computation of the n =
1,2,3 growth rates (normalized to the poloidal Alfvén time T, = 0.2 s) are plotted in Fig. 5.11
VETsus qpm;,. These calculations are resistive with a magnetic Reynolds number (as defined in
[Cnar-90}) of s = 10°. The n = 1 and 2 modes are ideally unstable kinks as is the n = 3 mode
for g, < 1.15. It can be seen from Fig.5.11 that as q,;,, decreases the instabilities appear in
the correct experimental sequence n = 3,1,2. A difficulty is that the n = 2 mode always grows
more slowly than the n = 1 mode contrary to the experimental observation. It may be that a
nonlinear simulation or the adcition of terms not included in the MHD model could make the n
= 2 mode dominant for q.;; < 1. The very large growth rate of the n = 1 mode for q,;, < 1.1
arises because the central poloidal beta [Buss-75] calculated from the LIDAR pressure profile is
about 1.5, well above the critical value of around 0.3 when g, = 1.

As the g-profile is not directly determined during the n = 3 activity, the sensitivity of the
n = 3 growth rate to variations of q has been examined. For example, when raising the central q
to 2, the dependence of the n = 3 growth rate on q,,;,, is very similar to that shown in Fig. 5.11,
thongh its maximum is 25% larger. It can thus be concluded that the n = 3 results are not very
sensitive to details of the q-profile within the likely experimental range.

The growth rates of the n = 1, 2 and 3 modes have also been computed with the toroidal
linear resistive MHD code CASTOR [Kern-91]. The results of the calculation confirm those
obtained with the FAR code.

The question arises what is the effect of fast ions produced by ICRF heating on the
stability of the m = 1 kink during the PEP mode. For Pulse No. 23100, the ICRF heating
power is of the order of 10 MW and creates a significant fraction of fast ions; their total energy,
calculated using a Fokker-Planck code, is of the order of 0.5 - 1.0 MJ, compared to about 6 MJ
for the total plasma energy. The computed kinetic energy of the fast ions is in the range 100 -
200 keV, when the q = 1 surface appears in the plasma. The radial profile of their energy
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density is found to have its maximum within 0.03 m of the magnetic axis and to be almost zero
at 0.3 m from the magnetic axis. Thus, most of the fast ions are located within the q = 1 surface
measured at 0.25 cm (se= Section 5.5.4.3). Under these conditions, for the non-monotonic g-
profile observed during the PEP mode, the fast ions should be destabilizing for the m = 1 kink,

when q,,;, is just above 1 [Porc-91].

5.5.4.6 Topology of a rotating (m,n) = (1,1) mode

Fig. 5.12 shows the temporal
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5 due to mode coupling. We

] Fig. 5.12 Electron temperature versus time as measured
have performed a correlation 8 P

by various channels of the ECE radiometer. Note the large
amplitude of the oscillations at R = 3.6] m and their non-
sinusoidal behaviour. Due 1o difficulties in the absolute
calibration for this pulse, only normalized temperatures are
shown. The relative (channel-to-channel) uncertainty in the
profileis + 5 %.

analysis between the
temperature (from the ECE
radiometer) and poloidal
magnetic field oscillations,
taking into account the toroidal
separation of these diagnostics
and the n = 1 symmetry of the
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Fig. 5.13 Line integrated soft X-ray emissivity measured by the vertical camera showing the
ballooning character of the (1,1) mode. The brightness measured in Wind by each channel is
£ iven with the relative amplitude of the oscillation. The plasma centre at R = 3.30 m is viewed
by channel 23. The (1,1) mode amplitude is larger on the low-field side (channel 27) than on
the high-field side (intermediate between channels 18 and 19).
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mode: the maximum in electron temperature corresponds to a maximum in poloidal field. From
SXR fast data (200 kHz sampling) we find that the central dominant mode is (m,n) = (1,1).
The temperature maximum corresponds to a maxiimum in soft X-ray emission. The mode
rotates counter-clockwise toroidally, i.e. in the direction of the electron diamagnetic drift and
opposite to the neutral beams. In addition, the measurements from the vertical camera displayed
in Fig. 5.13 indicate that the mode has a ballooning character: it is stronger on the low field side
(channel 27) than on the high field side (intermediate between channels 18 and 19). The soft X-
ray centroid has a radius Rgxg = 3.30 m.
The soft X-ray
Pulse No: 23103 _ rotational tomographic
d T T v reconstruction (Fig. 5.14)
displays the (1,1) mode at r =
0.22 m. The rotating structure
has a small poloidal extent and
does not affect the core of the
plasma. It corresponds to a
radial displacement, which has
a maximum of around 0.05 m
and extends over about 0.1 m
of the plasma. It could be
interpreted as the O-point of a
(1,1) island.

The soft X-ray
measurements suggest the
existence of another mode near
the plasma centre (r = 0.1 m),
which has tentatively been
Fig. 5.14 Rotational tomographic reconstruction of the identified as (m,n) = (2,1). A
soft X-ray emissivity showing an (m,n) = (1,1) mode. plasma equilibrium with a

central value of g around 2 can
indeed be obtained with the
IDENTD code; so a (2,1) island cannot be excluded close 10 the magnetic axis.

Magnetic islands can be sustained by a current perturbation 8j flowing inside. In this

case, the core of the island with nested surfaces is expected to have a smaller poloidal extension
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than the region surrounding the X-points of the separatrix, which is easily destroyed by chaos,
since filaments carrying parallel current attract each other. From Ampere's law, it follows that
the current perturbation &j inside the island is opposite to the main plasma current j when the
shear q' is positive and in the same direction as j when q' is negative. If the current perturbation
&j is due to a thermal instability inside the island, it depends on the electron temperature through
the resistivity and Ohm's law. The resulting island is then colder than the surrounding plasma
when (' is positive and warmer when q' is negative [Rebu-84]. It follows that the electron
temperature oscillations associated with a rotating thermal island measured at a fixed location in
the plasma are expected to be non-sinusoidal: for a 'hot' island, the maximum is of shorter
duration than the minimum.

The non-sinusoidal behaviour of the oscillations observed by the ECE and soft X-ray
diagnostics seems to suggest at first the (1,1) mode structure is a ‘hot’ island. This agrees with
the existence of negative shear in the central region of the plasma as inferred above. However,
the ballooning character of the (1,1) mode observed experimentally is not explained by the
thermal island model {Rebu-84]. In addition, from the shear computed by IDENTD of ' ~ -5
m™! and the relative temperature oscillation amplitude 8T /T, = 0.5 at the island position, the
width calculated for a thermal island is about 0.5 m, much larger than that observed. Although
there is a large uncertainty in the shear determination, this calculation suggests that the island
could be strongly stabilized by some mechanism reducing its width such as bootstrap current in
the region of negative shear.

There remains the difficulty that the ideal MHD internal kink should be violently
unstable when the off-axis minimum of q is less that unity (see Fig. 5.11). Thus, if the (1,1)
mode is a true island, the internal kink must be stabilized by some unidentified mechanism or
by a nonlinear process taking into account the change in topology due to the presence of the
island. Alternatively, the (1,1) mode might be a local distostion of the flux surfaces with the
minimum in q just below the marginal value for the n = 1 mode destabilization (~ 1.1 for the
case shown in Fig 5.11). However, the topology of the nonlinearly saturated state computed in
[Holm-88] does not evidently explain the observation of a localized hot spot on the low field
side.
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5.5.5 Conclusions

MHD modes occurring during the Pellet Enhanced Performance (PEP) mode have been studied
in this paper. Analysis of soft X-ray data has led to the determination of the position of rational
q-surfaces, showing that the shear is negative in the central region of the plasma. In a particular
pulse, (m,n) = (3,2) and (2,2) modes are found at radii r = 0.14 and 0.25 m respectively. The
measured positions of the q = 1 and q = 1.5 surfaces are used as additional constraints to the
plasma equilibrium which shows a Shafranov shift in reasonable agreement with that obtained
from the soft X-ray measurements (about 0.20 m). The calculated current profile displays large
off-axis peaks consistent with the bootstrap current computed from the measured electron
density and temperature profiles. A predictive time-dependent 1-D transport code shows that the
bootstrap current is maintained by the improved confinement in the central region of the plasma
where the shear is negative: the ion transport coefficients are reduced to their neoclassical values
in line with the critical temperature gradient model; electron transport coefficients also have to
be reduced within this region and in this case are set to about 0.5 to 1 times ion neoclassical
levels.

During the PEP phase fast (m,n) = (1,1) MHD events often occur close to the maximum
in the neutron rate. These events are usually preceded by n = 3 modes and followed by
dominant n = 2 modes. This sequence of modes (n = 3, 1, 2) appears in calculations obtained
with two different toroidal lincar MHD codes assuming a non-monotonic g-profile with an off-
axis minimum q,,;, which is decreasing from above to below 1. However, the n = 2 mode is
always less unstable than the n = 1 mode, contrary to the experiment. The large growth rate
calculated for the n = 1 mode for g, < 1.1 is due to the high value of the central poloidal beta
of 1.5 characteristic of the PEP mode. A rotating (m,n) = (1,1) mode has been studied in detail:
it has the appearance of a localized hot spot ballooning at the low ficld side of the plasma. This
hot spot has some characteristics of a ‘hot’ island consistent with the presence of negative shear
in the plasma core. Both experimental observations (n = 2 mode after the (1,1) MHD events
and hot spot) suggest that the internal kink is strongly stabilized by some mechanism or by a
nonlinear process taking into account the change in topology due to the presence of islands.
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Appendix
Table of symbols and definitions

Most of the symbols used are explained where they appear, unless their meaning is assumed to
be known. Here, some of the more important symbols are listed along with their definitions.
Note: y is normalized such that y = 0 on the magnetic axis and y = 1 at the plasma boundary.
The symbol R, refers 1o the pole of the toroidal coordinate system and does not necessarily
coincide with R, the major radius of the tokamak.

Symbol Unit Definition
A, {m?} Area of a poloidal plasma cross-section j dRdZ
VSl
vy (m3) Plasma volume: 2x I R dA
L {A) Total current: Jj, dA
A
Amin {m} Minor radius: (R,,(y = 1) - R (¥ = 1))/2
bmin {m} Minor radius: (Z_, (W = 1) — Z_ (¥ = 1))/2
Reeo {m}) Position of pl. bound.: (R, (¥ = 1) + R (¥ = 1))/2
Zgeo (m) Position of pl. bound.: (Z_,,(v-l)+z,h(y-l))/2
Row {m} Current centre: [L JR je dA]
Zew {m} Clmmaenue.[i; Aj Zjs dA]
Runeg {m) Position of magnetic axis: R(y =0)
Zneg {m]} Position of magnetic axis: Z(y = 0)
S {dimensionless) Normalized Shafranov shift: [Rye = Ryeo)/Amin
€ {dimensioniess) Inverse aspect ratio: a,./Ro,,
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Unit

{dimensionless}

{dimensionless)}

{dimensionless)

{dimensionless)

{dimensionless}

{dimensionless}

{dimensionless)

{dimensionlcss)

Definition



