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(1) The perturbed electron temperature inside magnetic islands depend* on Ac
the local value of the shear and can be either higher or lower than she
environment temperature; the electron density and pressure perturbations,
however, display no such dependency on the shear.
This thesis, chapter 5.

(2) Radial transport is significantly reduced in regions of negative shear.
This thesis, chapter 5.

(3) The analysis of MUD modes provides a powerful tool for local

determination of the safety factor.
This thesis, chapter 5.

(4) The main obstacle in the analysis of MHD modes is not the quality of
measuring equipment, nor of analysis techniques, but the availability of

fast sampled data (i.e. > 40 kHz) from various relevant diagnostics on
overlapping time windows during the occurrence of MHD phenomena.

(5) Function parametrization is a generally applicable labour saving technique
for inverting computer models that can provide fast analyses with error
estimates of experiments that are repeated often; therefore it deserves more
attention in the physical community than it has received so far.

This thesis, chapter 4.

(6) Given the striking similarity of the equations of fluid dynamics and
magnetohydrodynamics, the two branches of physics involved should
work together more closely, in particular where investigations into chaos
and turbulence are concerned.

This thesis, chapter 2.



(7) The great quantity of reports erroneously confirming the heat and neutron
production in the electrolysis experiment of Pons and Fleischmann
following their announcement in April 1990 is partly due to the fact that the
difficulty of calorimetry and neutron measurement is generally
underestimated.

(8) Scientific lectures would be less boring and Dutch science would be
stimulated if more attention was paid on the Universities to the subject of
presentation.

(9) Recent occurences in Eastern Europe allow computation of the lifetime of
communist regimes at about 45 years. It is perhaps no coincidence that this
is also the time for a young man to grow old.

(10) The true cause of many important ecological problems (global warming,
pollution, traffic congestion etc.) is overpopulation.

(11) Raising the cost of owning or driving a car will not result in a significant
reduction of car use. Therefore it is to be recommended that car use be
made unattractive by other means, e.g. by severely limiting access to the
areas that form the goals for excursions by car, such as city centres. As a
side effect, these areas will then become more quiet, clean and beautiful.

(12) The introduction of ihe concept of functionality in design and architecture
has not led to greater enjoyment of their products nor to an improvement in
the quality of life and this concept should therefore be abandoned.

(13) Fusion remains a hot topic even after Pons and Fleischmann.

(14) Hoewel het aloude spreekwoord dat arbeid adelt ook heden ten dage nog
opgeld doet, geldt voor het merendeel van het werk slechts dat arbeid
vermoeit.



1. Introduction

1.1 Plasma

Conditions in the universe are quite different from those on earth. Whereas in the low-

temperature earthly environment matter is primarily solid, liquid or gaseous, most observable

matter in the universe (over 99%) is in the plasma state.

Natural examples of plasmas on earth are lightning (whether ball lightning is a plasma is

still a matter of debate at the time of this writing) and related phenomena (sparks). Attempts to

create plasmas under laboratory conditions on earth generally involve exciting a gas by heating

it, applying electromagnetic radiation or passing electric currents through it until it ionizes.

Because plasmas are rare in the natural earthly environment, research into its

characteristics did not start until the end of the previous century. Since then this has become an

important branch of physics, and a number of successful applications for plasmas have been

developed, amongst which the familiar fluorescent tube and the dry-etching process used in

microchip fabrication.

1.2 Fusion and fusion research

Once it was realized that our main energy source, the sun, is a gigantic plasma and a fusion

reactor kept together (confined) by its own gravitation, the question arose whether it is possible

to mimic the conditions of the sun and generate energy in a similar way here on earth. It is

clear, however, that a plasma in a laboratory must be confined by some other force than

gravitation.

There are a number of reactions between light elements that yield energy, but some are

easier to initiate than others. The light elements involved in 'easy' fusion reactions have long

been used up in the sun, while they are still available on earth as relics of early cosmological

processes. Profiting from this gift of nature, the goal of fusion research is to create a mixture of

deuterium, D, and tritium, T, or alternatively D and helium, 3He, at such temperatures and

densities that fusion will occur at a sufficient rate. The reaction

2D + 3T -» 4He + *n + 17.6 MeV,

the fastest reaction occurring in a fusion plasma, produces an enormous amount of energy in

accordance with the mass deficit E = me2. Theoretically, 1 kg of D-T gas might yield as much



energy as ten million liters of oil. And since the raw materials (D and Li which is used to breed

T) are abundant, a fusion reactor might solve the problems of energy supply for thousands of

years, even at low reactor efficiencies.

Thus motivated, the European Community has set a clear goal for its fusion program:

the objective is to obtain a source of energy that: (a) produces electricity at an acceptable cost

while operating reliably; (b) does not produce carbon dioxide or harmful chemicals; (c)

produces only a small amount of nuclear waste during normal operation and after termination of

operation; (d) cannot cause disruptive accidents; (e) does not impose a large demand on scarce

natural resources; and finally (f) does not have any military applications. The USA, the USSR

and Japan have similar programs, and forces are joined in an international cooperation project:

ITER.

1.3 The tokamak

In the course of a number of decennia several schemes were developed for generating plasmas

in the required conditions (hot and dense). Amongst these are inertial or laser fusion and

magnetic confinement devices of many types. The most successful concept has so far been the

tokamak, originally developed in the USSR ('tokamak' is an acronym of toroidal'naya kjjjnera

and magnitnaya kjatushka, meaning 'toroidal chamber' and 'magnetic coil'). A tokamak is a

doughnut-shaped (i.e. toroidal) device with a strong magnetic field in the toroidal direction

(Fig. 1.1). A gas is injected into the vessel and ionized, after which a toroidal current is induced

in the plasma. The plasma current then induces a poloidal magnetic field that provides an

inward pinch force on the particles that are now closely bound to the magnetic field lines, and

thus the plasma may detach itself (partly) from the wall. The main advantage of this concept is

that it is a closed system so that there are no end-losses such as in a linear device.

Advantages of tokamak fusion energy generation

Given the enormous energy yield from a small amount of fuel the natural fuel resources can be

considered to be essentially limitless: the oceans contain enough D to supply energy for millenia

to come, and it can be won cheaply. The first generation fusion reactors will also need tritium,

T, which can be bred from Lithium, Li, that must be mined. The exhaust of a fusion reactor

will consist mainly of He, a harmless inert gas; no CO2 or any other climate-affecting gases will

be produced. A fusion reactor is inherently safe: a 'meltdown' or runaway reaction is not

possible as there is always only a very limited amount of fuel present in the device: e.g. the
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Fig. 1.1 Design of the ITER tokamak. The toroidal vacuum vessel in which the plasma is

held can be seen, as well as several external coils that generate the magnetic field that confines

and shapes the plasma.
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energy content of the plasma of a JET-size device is at any time during operations less than that

of 10 liter of boiling water. Finally, a serious technical failure will always result in a termination

of the burn.

Disadvantages of tokamak fusion energy generation

A major disadvantage of the tokamak concept is that power stations based on this idea will be

very costly and large, and that they can only be used where large electricity distribution grids

are available. Also, such power stations require a high level of technology, comparable to space

travel, which does not favour developing countries. Some people fear that concentrated power

generation increases the political vulnerability of a country to terrorism. However, some of

these disadvantages also apply to other forms of concentrated electricity generation such as

hydroelectric power.

Another disadvantage is that, while the exhaust is reasonably safe, parts of the power

stations become highly radioactive. Materials research aiming at finding materials able to

withstand an intense neutron flux for a prolonged period of time is advancing. Yet it is

estimated that the average lifetime of components in a power station is about 10 years, implying

that substantial amounts of highly radioactive waste are produced in this way. This problem

reduces the advantage of having low-level radioactive exhaust, even uiough this waste may

have a relatively short half-life depending on the choice of materials.

Problems in achieving the fusion goal

Apart from the political problem of obtaining enough money to continue the research, there are

several unresolved scientific and technical problems, of which some of the main ones are: (a)

achieving the conditions (temperatures, densities) as required for successful power station

operation. There has been a steady progress in this field and there is little doubt that this goal

can be reached; (b) suppressing those instabilities that terminate operation and damage the

device. Major progress has already been made in this field and it will probably be possible to

suppress or avoid all major instabilities successfully; (c) removing exhaust (He) from an

operating reactor. Under certain circumstances, helium tends to amass near the centre of the

reactor, thus choking the process. Several operating schemes have been suggested to deal with

this problem, amongst which the scheme with controlled central instabilities is perhaps most

promising because the plasma constituents are remixed regularly.
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1.4 This thesis

In a tokamak, the plasma is confined by means of a magnetic field. There exist an equilibrium

between outward forces due to the pressure gradient in the plasma and inward forces due to the

interaction between currents flowing inside the plasma and the magnetic field. The equilibrium

magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of

constant flux. The equilibrium yields values for global and local plasma parameters (e.g.

plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is

essential for plasma control, for the understanding of many phenomena occurring in the plasma

(in particular departures from the ideal equilibrium involving current filamentation on the flux

surfaces that lead to the formation of islands, i.e. nested helical flux surfaces, Fig. 1.2), and for

the interpretation of many different types of measurements (e.g. the translation of line integrated

electron density measurements made by laser beams probing the plasma into a local electron

density on a flux surface).

The problem of determining the equilibrium magnetic field from external magnetic field

measurements has been studied extensively in literature. The problem is 'ill-posed1 which

means that the solution is unstable to small changes in the measurement data, and the solution

has to be constrained in order to stabilize it. Various techniques for handling this problem have

been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution

in order to stabilize it. Most equilibrium solvers are not able to handle very dissimilar

measurement data which means that information on the equilibrium is lost. They generally do

not allow a straightforward error estimate of the obtained result to be made, and they require

large amounts of computing time. These problems are addressed in this thesis.

The investigations presented here can be divided into three parts: (1) determining the

magnetic field outside the plasma and determining the plasma boundary and some characteristic

plasma parameters; (2) determining the full equilibrium inside the plasma; and (3) studying

departures from the equilibrium known as MHD modes.

The first part is addressed using moment methods. Moment methods allow a systematic

treatment of the ill-posedness of the problem without introducing arbitrary restrictions of the

equilibrium solution. Exact relations between known sets of moments are found. The

methodology is successfully applied to the RTP tokamak, and the external magnetic field, the

plasma boundary and moments of the current distribution inside the plasma are determined from

magnetic field measurements.
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The second part, determining the full plasma equilibrium, is addressed by means of the

method of Function Parametrization (FP). FP is a technique to obtain the inverse of complex

mappings. Pioneering work on this method has been done by B.J. Braams. In this thesis, the

existing theory of FP is elaborated further and in detail. Advantages of FP are that it is quite

generally applicable; it can deal with large numbers of diverse measurement data to obtain a

consistent result; it provides error estimates of the obtained result, and differentiates between

systematic and random errors; and it is fast so that it can be used in on-line data analysis. It is

applied to the inversion of an existing forward computer mapping of plasma parameters onto

measurements, the HBT equilibrium code that was developed at Rijnhuizen by H. Goedbloed.

This inverse mapping is used to obtain the plasma equilibrium from magnetic data at RTP and

from polarimetry / interferometry data at TEXTOR.

Thirdly, the departure from the ideal equilibrium with nested toroidal flux surfaces

caused by helical MHD modes is studied. These instabilities arise because under certain

circumstances field lines for which the ratio of the number of toroidal turns to the number of

poloidal turns is rational can be easily displaced. Due to finite resistivity the field lines reconnect

so that the topology of nested toroidal flux surfaces is changed and nested helical flux surfaces

appear (Fig. 1.2). These 'islands' affect radial heat transport profoundly, causing increased

heat loss from the plasma such that they are an obstacle in obtaining the high central

temperatures needed for fusion. Knowledge of the precise nature of these modes is essential in

improving the performance of tokamaks. The study of MHD modes presented in this thesis

leads both to a better understanding of the modes and their topology and to a re-evaluation of

the underlying equilibrium. Observation of MHD modes at JET during Pellet Enhanced

Performance (PEP) discharges leads to the discovery of a central region of negative shear with

improved confinement.

Chapter 2 serves as a general introduction to the subject matter of this thesis. The basic

MHD theory is treated and the plasma equilibrium equations are derived in a slightly

unconventional way. Also, the matter of turbulence and mode activity is addressed briefly. The

remainder of the work can be divided into three parts as outlined above, each of which is

presented in a separate chapter. Firstly, moment expansions are investigated in chapter 3. In

this chapter, the relationship between two sets of moments is established and they are applied to

the determination of the magnetic field and characteristics of the current distribution from

magnetic measurements at the Rijnhuizen Tokamak RTP. In chapter 4 more complete

information about the plasma equilibrium is obtained by means of Function Parametrization

(FP). The theory of FP is treated in detail. FP is applied to the determination of the plasma
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equilibrium at RTP and at the TEXTOR tokamak. Finally, magnetohydrodynamic (MUD) mode

activity is studied in chapter 5. Mode activity at RTP and at JET in PEP discharges is

investigated with a range of diagnostics. The measurement of the position of some modes leads

to a better determination of the safety factor (q) profile, which, in the case of the PEP

discharges, is found to be non-monotonic, with important consequences for local transport.

The appendix provides a list of symbols and their definitions.

Fig. 12 a Schematic representation of an ideal MHD equilibrium with nested toroidal flux

surfaces in which helical magnetic field lines are embedded.

Fig. 1.2b The topology is altered by the appearance of islands, sets of nested helical flux

surfaces.
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1.5 Publications produced in the course of this work
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2. MagnetoHydroDynamics

2.1 Introduction

The equation that describes the toroidally symmetric plasma as a single-species conducting fluid

is the well known Grad-Shafranov equation. It is the basis for a large part of the methodology

described in this thesis. Therefore its derivation from basic M?.gnctoHydroDynamic (MHD)

equations is described step by step, explicitly displaying the most important assumptions,

although in a somewhat unusual manner. The derivation is only mem as an introduction; more

rigourous treatment can be found in many textbooks. Some equations dnived as intermediate

results are subject to less restraints or assumptions than the Grad-Shafranov equation and are

therefore important in research that looks to the plasma in more detail than is permitted by the

Grad-Shafranov equation, such as the study of the three-dimensional equilibrium or magnetic

turbulence. Sections 2.6 and 2.7 deal briefly with the breakdown of the ideal MHD equilibrium

due to turbulence and mode activity.

2 .2 Coordinate systems

When studying tokamak devices such as described in Chapter 1, two obvious choices of

coordinate systems facilitate the description. Here, both systems are used alternately. In

addition, there is a less obvious choice of coordinate system (the so-called toroidal coordinates)

that is of use in a particular moment formalism that is introduced in Chapter 3.

Firstly, the familiar left-handed cylindrical coordinate system (R,Z,<t>) is introduced. The

Z axis coincides with the major axis of the tokamak and the plane Z = 0 is the equatorial plane

of the device.

Secondly, a left-handed coordinate system, the polar coordinate system (p,0,$), is

introduced. It is in fact a simple plane polar coordinate system but with a third coordinate, f,

added. This coordinate system has a ring-shaped pole (R = RQ, Z = 0) that coincides with the

minor axis of the tokamak (the 'minor axis' is a meaningful quantity with circular cross-section

tokamaks only; in devices of other shape it is somewhat arbitrary). The relationship between the

cylindrical coordinate system and the polar coordinates is:

R = Ro + p cos 0 (2.1a)

Z = p sin 6 (2.1b)

The toroidal coordinate <J> is identical to the cylindrical coordinate <J> (Fig. 2.1).
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Fig. 2.1 A set of nested flux surfaces (not
to scale). The magnetic axis is shifted
outward by an amount A with respect to the
plasma boundary. >n this figure it is assumed
for simplicity that the plasma boundary
position Rgeo is the same as the tokamak
minor axis Ro, which is not generally true
(see Appendix). The relationship between
the cylindrical coordinate system (RZ.f)
and the polar coordinate system (p,0,$) can
also be seen. The polar coordinate surfaces
generally do not coincide with flux surfaces.

2.3 Representation of the magnetic field

2.3.1 The flux function
The magnetic field is divergence free, or equivalently:

V B = 0 (2.2)

(Gauss' Law). One may therefore introduce a magnetic potential A and an arbitrary gauge field
G and write

B = V x (A + VG) (2.3a)

satisfying Eq. (2.2) for all choices of A and G. A (or, equivalently, B) is expressed in flux
coordinates (p1, 6', <t>'). These coordinates are only known after solution of the Grad-
S hafranov equation.

A = Ap. Vp1 + Ae- V91 + A0. Vf. (2.3b)

By choosing the arbitrary gauge field G such that VG = - A a Va (where a = p \ 8' or $'),
one can transform away any one of the three components of A in Eq. (2.3b). In other words,
tne magnetic vector field can always represented by means of only two scalar fields due to the
restriction imposed by Eq. (2.2). Choose VG = - Ap. Vp', then Eqs. (2.3a and b) can be
simplified by absorbing G:
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B = V x A (2.4a)

A = Ao. V81 + A0- V<J>\ (2.4b)

Combining Eqs. (2.4a) and (2.4b) one obtains

B = VAe. x V0' + VA¥ x V<J>\ (2.5a)

The two components of the vector potential Ae- and Â - are renamed as y t, the toroidal flux,

and -vj/p, the poloidal flux:

B = Vy, x V91 - Vy p x V<(>', (2.5b)

Eq. (2.5) allows a fully three-dimensional description of the magnetic field.

2.3.2 Toroidal symmetry

Of more immediate interest is the introduction of toroidal symmetry. Because tokamrk devices

are (to first order) symmetric with respect to rotation about the principal axis, one would expect

the magnetic field structure to reflect this symmetry (to first order). This implies that neither y ,

nor y p depend on the coordinate <|> and V<t>' = V<|>. Therefore Vy t has only components in the

p- and 0-directions, so:

y t V e ' = B<,e4,, (2.6)

where B^p.e) is the toroidal magnetic field. Thus Eq. (2.5b) becomes

B = B0 e0 - g- Vyp x e<,, (2.7)

where y p = yp(p,8). Eq. (2.7) is the familiar tokamak physics representation of the magnetic

field. In the following the subscript p is omitted unless confusion might otherwise arise.
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2.4 The plasma model

2.4.1 The macroscopic description

The magnetic field equation (2.7) does not yet contain any plasma physics. One wishes to

describe the plasma as a fluid using the macroscopic quantities v (velocity), p (pressure) and p

(density) as state-identifying parameters. These quantities can be derived as velocity moments

of a set of distribution functions/-(x.v.t) for each particle species i (having mass nij), where x

is the position vector and t the time [Bitt-86, Frei-87]:

n; = j / j d3v, Vi = ^ Jv/j d3v, Ti = ̂  J(v-Vi)
2/i d3v

T i (2.8a - f)
i P i i

Thus, the macroscopic description (v, p, p) is based on a microscopic description/•. A detailed

analysis would require conservation equations (mass continuity equation, charge continuity

equation, conservation of momentum and conservation of energy) for each species separately,

as well as Maxwell's equations and Ohm's Law. It must be noted that due to anisotropy caused

(mainly) by the strong magnetic field, the pressure is a tensor rather than a scalar quantity

| Brag-65|. Viscosity, v, appears in the equations through the effect of particle collisions, which

are described in detail by collision operators. The situation becomes even more complex when it

is realized that particle drifts are important. Neoclassical theory accounts for the latter [Hint-76].

As will be clear from the above, a thorough treatment of a magnetized plasma can easily

become very cumbersome. In order to gain some insight into the global behaviour of the

plasma, one would rather use a simplified model that is more easy to handle. Effects that are

neglected by the simplification can then be added later. Such a gradual approach to a detailed

model leads to greater insight into the plasma properties. Even if one would not agree to this,

the available measurements do not allow a detailed determination of the velocity distribution

functions and computers cannot handle the full equations in simulations, and therefore the

details of the full model cannot be tested by experiment (as yet). Therefore, approximate models

(suffering the same degree of cmdeness as the available measurements) are more appropriate.

2.4.2 The one-fluid description

The following paragraphs discuss the 1-fluid MHD equations. This set of equations assumes

that the motions of the various particle species can be summarized by a single vector field v as

in Eq. (2.8). Further, the equations do not contain the effects of heat conduction, they assume
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the pressure to be isotropic and they ignore the gravitational potential (which, however, can

easily be included in the Vp term). Finally, they assume that viscosity effects can be

summarized by a vp V2v term. This is a very crude simplification of the tensorial form of the

viscosity term VTI [Brag-65], which involves both B and v in order to account for pressure

anisotropy, but since it will only be used in order of magnitude estimates it is sufficiently

detailed.

The 1-fluid equations are:

f = -VxE (2.9a)

j = V x (B/M) (2.9b)

V-B = 0 (2.9c)

E + v x B = rtf (2.9e)

^ 0 (2.9f)

P(v>v>v = ~V<P) + j x B + aE + vpV2v (2.9g)

The equations (2.9a,b,c and d) are recognized as Maxwell's equations; Eq. (2.9e) is Ohm's

Law; Eq. (2.90 is the equation describing conservation of mass and Eq. (2.9g) is the equation

of motion. There are 15 variables: B, E (the electric field), j (the current density), v, p, p

(mass density) and a (charge density) and 15 equations, so this set of equations is closed. Note

that rj (the resistivity) and v (viscosity) are considered to be known parameters. Of course, like

v, r\ should really be treated as a tensor as well due to anisotropy. The magnetic permeability is

assumed constant throughout the plasma: \i = Ho, as is the permittivity: £ = £(,.

In order to make estimates of the magnitude of the various terms, the positive scalars x*

are introduced, giving the typical magnitude of the various variables x in the plasma. By

definition,

B = B*B, E = E*E, j = j * j , v = v*v, p = p*p, p = p*p, o = <J*G (2.10a)

where the x are dimensionless scalars or vectors. Likewise, define
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This enables one to write the equations (2.9) in dimensionless form:

= 0

a4 fe + ax v x ft = ana1a2 j

dt

where

-.A

PTA"
dt

B*L*

(2.11a)

(2.11b)

(2.11c)

(2.1 Id)

(2.1 le)

(2.1 If)

(2.1 lg)

L*

MoP*v*2

B*2 '
Moa*E*L*

B*2 '

Note that a^ = 1/Rem, where Rem is the magnetic Reynolds number; OL, = v*2/vA, where vA is

the Alfv6n velocity; ctp=| P, where P is the local normalized pressure; and ciy is related to the

more commonly used fluid Reynolds number Re = v*L*/v by the relation Oy = <Xp/Re. There is

no commonly used parameter equivalent to ao , because usually quasi-neutrality is assumed

from the beginning (see section 2.4.3). Thus, the first result of this approach is that the

important parameters p, Re, Rem and others appear automatically when making the Eqs. (2.9)

dimensionless.

In the Eqs. (2.11), which are equivalent to Eqs. (2.9), all variables are dimensionless

and of order unity if the x* are well-chosen (i.e. they are given realistic values). Strictly

speaking, this can only be true in a limited region of the plasma: e.g. it is to be expected that

some terms become vanishingly small or very large near the plasma boundary. Furthermore,

the meaning of L* and t* is somewhat ambiguous, because typical length and time scales may
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not be the same for all variables while typical length scales for one variable may not be the same

in all directions (anisotropy).

The 9 a '̂s represent all possible independent dimensionless combinations of the 9

parameters x* of Eq. (2.10), \i0, e0 , TJ and v (13 parameters in all), because there are 4

independent physical dimensions involved (kg, m, s and C). The relative importance of the

terms appearing in these equations can be estimated from the dimensionless factors av

provided the inner products and vector products do not make terms vanish. It is assumed that

they vanish locally only. In that case the Eqs. (2.1 la, b, d and f) demonstrate that 0Cj = O(l)

(i=1,2,3,4). This is probably why simple dimensionality arguments so often prove to be

successful in plasma physics. Thus, only three of the typical magnitudes B*, E*, j * , v*, a*,

L* and t* are independent

The terms on the left-hand side of Eq. (2.1 le) are both 0(1), which implies that the term

on the right-hand side either cancels or is also 0(1). So clearly there are two distinct regimes:

ot̂  « 1 (the ideally conducting plasma) or o^ = 0(1) (the resistive regime).

In the following, the conditions under which some terms can be neglected will be

discussed and quantified. Initially it is assumed a,, = 0(1), but the possibility of letting a,, -» 0

is left open.

2.4.3 The assumption of quasi-neutrality

In the quasi-neutral model it is assumed that the deviation from space charge neutrality is

negligible. This assumption is motivated by introducing the Debije shielding length XD that is a

measure for the Coulomb interaction radius in a plasma consisting of two fluids of ions and

electrons [Wess-87]:

2nee'

where EQ is the vacuum permittivity, Te the electron temperature in eV, ne the electron density in

m~3 and e the unit charge in C. Thus, for a plasma of Te = 10 keV and ne = 1019 m~3,

XD - 10"4 m. In tokamak plasmas the plasma dimensions are much larger than XD (by 4 orders

of magnitude) and so the assumption of quasi-neutrality is reasonable. Under charge neutrality,

the inequality

<*„ « 1 (2.12^
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holds. Using oq = O(l) (i=l,2,3,4) it follows that

o* « B*/n E* « cB*, v* « c, t* » L*/c, L* » —
V

where c is the light speed. None of these restrictions is strong, confirming the weakness of the

assumption. In particular, the restriction on o~* becomes very weak for small TJ. The

consequence of this assumption is that the o^ term in Eq. (2.1 lg) may be dropped.

2.4.4 The assumption of quasi-static flow

A second assumption that is often made is the assumption of quasi-static flow, which means

that the co-moving time derivative can be ignored in Eq. (2.1 lg), i.e. the first two terms are

negligible. This is achieved when

ap « 1 (2.13)

The implications of this assumption are easily found to be, again using cq = O(l) (i= 1,2,3,4):

E* « vAB*, v* « vA, t* »L*/vA , L* » "

B*
where vA is the Alfv6n velocity, vA = •

This defines the validity regime for the approximation (2.13). The constraints are a little

stronger than with (2.12). Again, the restraint on L* vanishes as T| -> 0, but the others remain.

If one takes B* = 1 T, i\ - 10"9 Urn and p* = 10~8 kg m~3 as typical values for a tokamak

plasma, vA = 107 m/s, so that these conditions are easily met for most phenomena of interest.

This description, however, ignores an important effect: the gyration of electrons and

ions around the magnetic field lines. The thermal velocity of 10 keV electrons is 6107 m/s,

violating the assumption. So the gyromotion is not described under this assumption, and the

description refers to guiding centre (i.e. the average position of a particle during one gyration)

motion only, and timescales longer than the inverse of the gyration frequency. In a plasma of

10 keV temperature and 1T magnetic field, the gyration or Larmor radii of electrons (X,) and

ions (Xj = Vmj/me Xe if Tj = TJ are Xe = 3-10"4 m and Xj = 10"2 m, approximately. Thus, the

smallest length scale that can be described is larger man Xj.
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2.4.5 The assumption of low collisionality
A third assumption is the assumption of low collisionality, which should be motivated from a
study of the collision operator under given conditions. The assumption holds when

oc
v

(2.14)

The implications of this assumption are found to be:

E*«v A B* S l 1 v , V * « V A S T I V , t *»v A L*/s n v , L*

Thus, the severity of this assumption depends on the dimensionless ratio ŝ y = T|/((iov) =
Re/Rem. For the typical tokamak it can be shown that snv « 1 [Bate-80], so this assumption is
a lot stronger than (2.13). Taking some typical values as before, one finds s^v = 10~13,
yielding L* » 103 m. Now the electron mean free path can be estimated at 104 m, barely
satisfying this requirement But obviously other length scales cannot meet this demand, and it is
clear that a realistic model should take account of the viscosity or collision term.

Summarizing the previous sections, it is found that S dimensionless parameters can be
used to distinguish plasma regimes in the one-fluid MHD description (note that the matter of
low- and high-beta regimes was not discussed). An effort was made to show explicitly what the
assumptions that are made in the derivation of the Ideal MHD Model mean in terms of
restrictions on typical parameters in order of increasing severity. Obviously, the estimates thus
obtained are quite crude because no account is taken of effects such as anisotropy.

2.4.6 The ideal MHD model
The ideal MHD model is derived from Eqs. (2.9) under the assumptions of quasi-neutrality and
quasi-static flow, i.e. Eqs. (2.12) and (2.13) and a p « Op (negligible centrifugal forces). In
the limits r\ -> 0 (negligible resistivity) and v -* 0 (collisionlcss regime, Eq. (2.14)) this set of
assumptions yields the common ideal MHD equations. In this limit the equations form a
consistent and closed set. The set of ideal MHD equations is

V p = j x B (2.15a)

HoJ = V x B (2.15b)

V B = 0 (2.15c)
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In order to impose toroidal symmetry, rewrite Eq. (2.7) as

B = RB<)V<!>-^Vyxe(t), (2.16)

and insert it in Eq. (2.15b):

Hoj = V(RB,,,) x V $ - e ^ A*v, (2.17a)

where

Two important observations can be made at this stage: from B-Vp = B>(j x B) = 0 it follows

that the pressure is constant on a magnetic surface (assuming, of course, that there are magnetic

surfaces; a magnetic surface is a two-dimensional subspace to which a particular field line is

tangent everywhere). In the toroidally symmetric case under study here magnetic surfaces can

be identified with the surfaces \\f = const Thus the observation above implies p = p(>|0-

Combining (2.15a) and (2.17a) one finds

^ ^ ^ (2.18)

implying that VfRB^) = aVy, or F = RB^ is a surface quantity F = F(y). From Eq. (2.17a) it

is clear that F is proportional to the poloidal current flowing on the flux surface. It must be

stressed that p = p(y) and F = F(y) are local relations that may not hold everywhere, e.g. on

surfaces with topologically disjunct parts such as occur with separatrices.

The familiar Grad-Shafranov equation [Grad-58, Shaf-58] now follows from Eq.

(2.18):

V <219>
where' denotes d/dy. The Grad-Shafranov equation is an elliptic differential equation with two

source functions, p and F.
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2.5 Solving the ideal MHD equations

2.5.1 General considerations

The MHD equilibrium problem is to solve Eq. (2.19) with externally imposed boundary

conditions (i.e. measurements). Internal conditions such as continuity of B-n and of H x n (if

surface currents are absent) on all internal surfaces where n is the normal on the surface must

be satisfied in the solution region. Additional constraint equations are necessary to fix a unique

solution (geometrical constraints such as limiters must be taken into account, but, more

importantly, a restriction upon the class of profiles p(\|/) and F(\\r) must be imposed).

Much has been written on the subject [Shaf-58, Mukh-71, Zakh-73, Goed-84, Lao-85,

Frei-87, Blum-90] and this will not be reviewed here. However, it is attempted to shed some

light on the problem in general terms.

The MHD equilibrium problem is an inverse problem for Eq. (2.19): the solution should

provide a mapping of the discrete set of measurements represented by the vector q, which can

be expressed as functional of the toroidal current density (or the two source functions p and

F), to the flux function y and characteristic parameters of the equilibrium, or equivalently the

current density.

Consider the simplified problem of finding a plasma equilibrium with fixed boundary

and total current. The free-boundary problem is not principally different but it would complicate

the discussion needlessly. Then, the problem can be visualized as finding the inverse mapping

of a projection; namely the projection of the current density in terms of an infinite class of

functions J in a Hilbert space R (defined on the interval 0 < y < 1, where \|Ms a normalized flux

label that is 0 on the magnetic axis and 1 at the plasma-vacuum interface; see Fig. 2.1 for a

typical flux surface geometry) onto the finite set of measurements. Obviously, the inverse

mapping can only yield the projection of J onto a finite-dimensional subspace 5 of R whose

dimension is dictated by the number and accuracy of the measurements. The 'true' current

density also contains a component orthogonal to the subspace S that maps to zero (or rather to

components of the measurement vector q small compared to the measurement error e(q)) in

the measurement space, and which cannot be determined from the measurements.

It is clear, therefore, that one must restrict the solution a priori to a certain subspace S in

order to obtain a well-posed problem; if such a restriction is not made, the solution will be

unstable to small variations in the measurements. This may seem unsatisfying because it means

in practice that the solution of the equilibrium problem is dictated beforehand except for a few
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free parameters. Consider, however, the formulation of the determination of such free

parameters, which is expressed as a least squares problem minimizing R [cf. Luxo-82, Brus-

84, Fene-84, Blum-90] where

where Nq is the number of measurements, q is an actual set of measurements, q1 is a simulated

set of measurements and w; are weights. It is obvious that R will reach its deepest minimum for

that choice of subspace S that contains at least the total set of functions that does not map to

zero (or insignificance) on the space of measurements. Therefore, if more measurements are

added to an existing set, it may be necessary to extend the representation of the current density

to a larger class of functions. Nevertheless some arbitrariness in the representation of the

current density will always be present (namely part of it may lie in the subspace orthogonal to

S). It is interesting to note that the equilibrium problem bears some similarity to the problem of

finding a distribution (of e.g. current) from a set of (current) moments.

2.5.2 A conventional equilibrium solver method

The principal method of equilibrium determination is straightforward in principle, even though

it is complex in practice. Below, a global description of the typical procedure is given. More

comprehensive reviews are found in Refs. [Lack-76, Blum-90].

In general, the plasma state is represented by a finite set of parameters. The MHD model

provides a mapping of these parameters onto the measurements. The choice of parametric

representation of the plasma state is somewhat arbitrary, but it is attempted to give a systematic

treatment of this subject here, as it will return in Chapter 4.

Some functional representation is chosen for the source functions p(\|f) and F(\|/) in Eq.

(2.19):

P(V) = P(Oy(a,V), F(V ) = F(O)*(b,V),

where a and b are the free parameters that are to be determined from the measurements, and /

and g axe functional giving the shape of p and F only. Generally, the functional used are

sums of polynomials, preferably though not necessarily built from elements of a complete set.

In theory, a and b are infinite-dimensional vectors, but they are truncated at a suitable point.

There must be two additional parameters to give the amplitudes of both functions (i.e. p(0) and

F(0)). These are generally given implicitly by means of the parameters Ip (the total plasma
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current) and P (the normalized plasma pressure). For some purposes it is more convenient to

use 8 (the Shafranov shift) instead of P, which is equivalent.

The plasma boundary geometry must also be specified by a set of parameters. The way

in which this is done depends on the basic shape, which is dictated by the machine for which

computations are made. The location of the geometric centre of the plasma boundary

(Rgeo, Zgeo) along with the average minor radius a ,^ (or equivalently the plasma volume) are

the basic geometry parameters. An infinite set of parameters describing deviations from a basic

shape (circular, D-shape or otherwise) is then e.g. given in terms of a Fourier expansion of this

deviation in the poloidal angle. Such a set of boundary shape parameters is denoted by the

vector c.

The free parameters p = {a, b, c, Rgeo, Zge0, a ^ , Ip, 8} are given some initial values,

and Eq. (.2.19) is solved to find \|/(R,Z). The cost function R introduced above is evaluated, the

parameters p are adjusted and the computation is iterated until a suitable minimum of R has

been found. Note that this procedure is restricted to the computation of equilibria with nested

magnetic surfaces and a single magnetic axis.
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2.6 Analogy with fluid dynamics

So far this chapter has only considered ideal MHD equilibrium. The plasma, however, is

pervaded by waves and oscillations of many different types and by turbulence [Bate-80]. In this

section the analogy between the MHD equations and fluid equations is explored, and it is

shown why the study of fluid turbulence is relevant to the study of turbulence in plasmas.

2.6.1 Analogy between Ideal MHD and Fluid Dynamics

A perfect analogy exists between non-resistive ideal MHD theory and fluid dynamics. Compare

the vorticity equations for an ideal incompressible fluid with the ideal MHD equations (2.15):

Ideal MHO Ideal fluid

Vp = j x B (2.20a) -V(p/p + u2/2) = o> x u (2.21a)

j = V x (fc/n0) (2.20b) co = V x u (2.21b)

V B = 0 (2.20c) V u = 0 (2.21c)

The formal identity of these two sets of equations is obvious: replacing o> (the vorticity) by

j , u by B/n0 and -(p/p + u2/2) by p/|l0, Eqs. (2.21) transform into (2.20). Shafranov has

successfully exploited this analogy to obtain some important results [Shaf-58].

2.6.2 Analogy between Resistive MHD and Viscous Fluid Dynamics

Often, however, one cannot neglect resistivity in the MHD description (as in the study of

turbulence) and one is forced to use the full MHD equations. Unfortunately, the perfect analogy

breaks down when additional terms such as resistivity and viscosity enter the equations.

To demonstrate this, the Maxwell Eqs. (2.9a,b) and Ohms Law (2.9e) are combined to

yield Eq. (2.22) (where p is assumed to be uniform and quasi-static such that V-v = 0):

Resistive MHD Viscous fluid

P I = (B-V)v + Z- V2B (2.22) P ^ = F - V ^ + vV2
u (2.23)

Here ^ is the convective derivative j> = g ; + ( v > ^ (° r * e s a m e ^ ^ u instead of v in the fluid

equation). Eq. (2%23) is the Navier-Stokes equation for an incompressible fluid with uniform

density and viscosity, shown here for comparison [Batc-67]. F is an external force and v the
fluid viscosity.
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Both models display nonlinearities which are quadratic (as a consequence of the

convective derivatives and in Eq. (2.22) also the (B-V)v term) and essentially convective in

nature. Further, both models contain diffusive dissipation that acts primarily on small-scale

turbulence (since the V2 operator is large for small scale phenomena). From these

considerations, one may expect turbulence to show globally similar behaviour in both models.

First it is assumed that the force appearing in Eq. (2.23) is conservative, i.e. it can be

written F = V0. Then, by taking the rotation of Eq. (2.23) one obtains:

Resistive MHD Viscous fluid

V x ( v x B ) + ̂ -V2B (2.24) ^£- = V x (u x co) + v V2co (2.25)
H-o

Eq. (2.25) is know as the vorticity equation. The similarity of these equations is even more

striking. Note that the equation of motion was not used in the derivation of Eq. (2.24) and

therefore this relation is valid even in collisional plasmas. However, appealing though the

similarity may be there is a fundamental difference in the sense that no relation similar to

co = V x u (valid in fluid dynamics) exists in MHD between B and v. Thus, Eq. (2.24)

describes an essentially more complex system than Eq. (2.25).

In order to restore the fluid-MHD analogy, a non-conservative force F is introduced in

the Navier-Stokes equation (2.23). Thus

Resistive MHD Viscous fluid

V x ( v x B ) + ^ -V 2 B (2.26) ^ - = V x (u xco + F) + v V2o) (2.27)
Ho

The external force F can be interpreted as being due to some external stirring of the fluid. The

equations, although still not identical, are now of comparable complexity. Thus one has the

interesting situation that the study of turbulence in externally stirred viscous fluids bears

relevance to MHD turbulence, and it may be possible to devise fluid turbulence experiments that

enhance our knowledge of MHD turbulence, provided that it is possible to obtain fluid

Reynolds numbers Re = u*L*/v of the same order of magnitude as the magnetic Reynolds

number Rem = \iQ\*L*tr\.

The model described above can be simplified in a tokamak situation, where the magnetic

field B has a dominant unvarying but inhomogeneous component Bo; in fluid flow, this would

correspond to a dominant vorticity QQ. Thus the analog of resistive turbulent flow in a section

of tokamak plasma is externally imposed turbulence in a rotating viscous fluid.
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2.7 MHD modes and stability

2.7.1 The safety factor

The magnetic tokamak equilibrium is characterized by nested toroidal flux surfaces. The helical

magnetic fieldlines lie on flux surfaces. A useful quantity is the safety factor, qty), which is

equal to the number of toroidal transits a magnetic fieldline makes for each poloidal transit.

Therefore the safety factor is [Wess-87, Frei-87]:

q = _L f i | i d s = W r _ L _ d s (228)
2K) R Be 2n J R 2 B 6

where the integration is carried out over a single poloidal circuit along the flux surface. Higher

values of q provide greater stability against tearing modes.

2.7.2 Tearing modes

In general, the safety factor in tokamaks is a roughly parabolic function of the radius p,

increasing towards the plasma boundary. Typically, it is approximately 1 in the centre and

around 4 at the boundary. Thus, there are always flux surfaces where q is rational, i.e. q = m/n

(m and n integer). A rational value of q means that after m toroidal and n poloidal turns a

magnetic fieldline on the flux surface connects with itself. On rational (or resonant) surfaces, a

small displacement of a fieldline is not smeared out over the whole flux surface, and can under

certain circumstances be enhanced: this is called a magnetic instability. In general, smaller

values of m and n imply stronger instability: e.g. (m,n) = (1,1) is associated with the violent

sawtooth instability (see Fig. 2.2 for a plot of fieldlines with (m,n) = (1,1) symmetry).

Due to finite resistivity the displaced field lines can reconnect (tearing mode), changing

the topology of the magnetic flux function, which now no longer consists of simple nested flux

surfaces (Fig. 2.3) [Bate-80, Wess-78, Wess-87]. The magnetic islands that are thus created

are helical structures with nested flux surfaces and a magnetic axis. Fig. 2.4 shows the result of

a resistive field line computation (Poincare* map) [Bick-87], showing the island structure in a

poloidal cross-section and the toroidal effect which results in a different island size on the inside

and outside of the cross-section. The helical island structures rotate mainly in the toroidal

direction because poloidal rotation requires energy to compress and expand them. These

structures can sometimes cause a disruption, especially if they lock to external magnetic stray

fields.
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Fig. 22 Field lines on a q = 1 surface. Fig. 2.3 Section of a few flux surfaces

One field line is highlighted for clarity.

The existence of islands is of

importance for confinement and heat

transport. The high mobility of particles

along the field lines leads to homogeneous

temperatures along the nested surfaces

within the islands, such that the temperature

profile is 'short-circuited' over the radial

extent of the island. Further, the existence of

a stochastic layer around the island

separatrix is expected to increase radial

transport through the 'X-points' of the

islands. Finally, island chains on separate

rational surfaces may overlap, creating a

stochastic area between these surfaces with strong radial diffusion [Rebu-86b].

around a rational surface (dashed line). The

field at the rational surface has been

subtracted from the total field, and thus the

field lines reverse direction from one side of

the rational surface to the other. The upper

figure shows the situation before

reconnection, the lower after reconnection

[Wess-87]. Note the change in topology: the

lower figure shows several sets of nested

flux surfaces (islands) within the pre-

existing set of nested flux surfaces. This

process may repeat itself to quite small scale

(secondary and tertiary islands), thus

creating a chaotic field structure.
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/^. 2.4 F/cW //ftf mapping or Poincari plot of magnetic field lines in a poloidal cross-

section [Bick-87]. Starting from an ideal equilibrium with nested flux surfaces, the field lines

are perturbed and islands appear (left-hand figure). If the perturbation amplitude is increased,

the islands grow and when the islands on neighbouring flux surfaces begin to overlap, ergodic

or random patters emerge (right-handfigure).
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3. Multipole and current moments

3.1 Introduction

The basic MHD equilibrium problem has been defined in the previous chapter: the

determination of the magnetic equilibrium inside the plasma, using magnetic probes that are

located outside the plasma. The problem can be divided into two parts: 1) solving the

homogeneous Grad-Shafranov (GS) or Laplace equation in the vacuum region surrounding the

plasma and determining the plasma boundary such that the solution matches the measurements,

and 2) solving the complete GS equation in the plasma region, such that the solution matches

the solution to 1) at the plasma boundary [Brus-84]. Already the first and easiest part of the

problem is ill-posed in the sense that small variations in the boundary data may cause large

changes in the solution some distance away. The reason for this is that poloidal variations of the

plasma current that behave as cos(m6), where 6 is the poloidal angle, give rise to magnetic

fields that fall off as p~(m+1> towards the outside, where p is the radial coordinate. Thus details

of the current distribution with high poloidal mode numbers m can be drowned in the signal

generated by the lower m's. Conversely, high m details that are measured need to be

extrapolated inwards if they are to be translated in a current distribution, and thus blow up

strongly: clearly an unstable procedure and very sensitive to measuring errors. A systematic

way of treating the ill-posedness is expanding the flux function in a set of harmonic functions,

and taking only a finite number of terms into account: such an approach is called a moments

method [Zakh-73, Woot-79, Lao-81, Lee-81, Lao-84, Hakk-87].

Section 3.2 is a reprint of the letter Exact relations between multipole moments of the

flux and moments of the toroidal current density in tokamaks [Mill-90a]. In it, two sets of

moments are introduced: current moments and multipole moments. Section 3.3 shows how the

current moments can be used to reconstruct the current profile, and a suggestion for definitions

of characteristic current distribution parameters is made. Section 3.4 discusses how the

multipole moments are applied at RTP in order to reconstruct the vacuum field, and the

accuracy of the determination of the multipole and current moments at RTP is studied. In

section 3.5 the relative merits of the two sets of moments are discussed.
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3.2 Exact relations between multipole moments of the flux and moments of

the toroidal current density in tokamaks

B.Ph. VANMILUGEN

3.2.1 Abstract

In tokamak fusion research, expansions of the flux in solutions to the homogeneous Grad-

Shafranov equation (multipole moments method) have been shown to provide a good

description of the flux outside the plasma. In practice, moments of the toroidal current

distribution are more often used, because they relate directly to meaningful global plasma

parameters. The letter presents a method by which exact relationships between the multipole

and the current moments can be obtained. Results for some important special cases are

presented.
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3.2.2 Introduction

An important topic in tokamak fusion research is the determination of the magnetic equilibrium

inside the plasma, using magnetic probes that are located outside the plasma. The problem can

be divided into two parts: (1) solving the homogeneous Grad-Shafranov (GS) or Laplace

equation in the vacuum region surrounding the plasma and determining the plasma boundary,

and (2) solving the complete GS equation in the plasma region such that the solution matches

the solution to (1) at the plasma boundary [Brus-84]. These problems are ill posed: small

variations in the boundary data may cause large changes in the solution some distance away.

The ill-posedness can be overcome by expanding the flux function in a set of solutions to the

homogeneous GS equation and taking only a finite number of terms into account. To solve

problem (2), the current distribution must generally be restricted to some physically relevant

class.

If, in the vacuum region outside the plasma, the flux function is expanded in a complete

set of solutions to the homogeneous GS equation, obtained by separation in toroidal

coordinates, the expansion coefficients are called multipole moments. Such moments have been

shown to provide a good description of the flux outside the plasma [Alla-86]. The moments

method can also be applied to the problem of computing the measured fields and fluxes from a

specified equilibrium. A drawback of the method is the absence of simple relationships between

these moments and physically more meaningful global plasma parameters.

Current moments, on the other hand, are widely used to obtain such global plasma

parameters as the total current and the position of thr current centre [Zakh-73]. Since these

moments can be easily computed from the magnetic signals, they are often used as plasma

control parameters.

This letter presents the relationships between these current moments, i.e. moments of

the current density with respect to polynomials in Cartesian coordinates, and the multipole

moments, i.e. moments of the flux function with respect to eigenfunctions of the GS equation

in toroidal coordinates.

In section 3.2.3 the notation used in this letter is introduced and a definition of the

multipole moments is given. In section 3.2.4 exact relationships between current moments and

multipole moments are derived.
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3.2.3 Toroidal coordinates andmultipolemoments

The poloidal flux function y obeys the GS equation:

= -231^0^,1, inside the plasma

= 0 outside the plasma (3.1)

where A*y = R2V(R~2V\|r) and j ^ is the toroidal current density.

Toroidal coordinates are defined by means of the following relationships with the usual

cylindrical coordinates (R, Z, $) [Alla-86; Mors-53]:

R =
Rp sinh (,

cosh £ - cos

R_ sin T|
(3.2)Z f

cosh L, - cos T|

where Rp is the pole of the coordinate system. Surfaces of constant £ are tori with major radii

R£ = Rp/tanh £ and minor radii â  = Rp/sinh £. At R = Rp, £ = °°, while at infinity and at R =

0, £ = 0. The coordinate ij is a poloidal angle and runs from 0 to 2x. These coordinates are

particularly suited to toroidal systems.

A complete set of solutions to the homogeneous GS equation A*y = 0 is provided

through the half integer Legendre functions [Fbck-32; Mors-53; Abra-65]:

i,c sinhC PJ.1/2(coshO cosQnn)
Tm ~ i •

- COST]

- cost]

u sinh;pi,.1Q(coshC)sin(mn)

"\coshC - COST]

J^cothQ sin(mn)
• \3.DU)

- COST)

The normalization of the Lefendre functions is the one adopted by [Abn-65]. It is possible to

expand the flux function y at any position in space in the toroidal harmonics (3.3):
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£ + M^ c
Vr + MiViS + M e

mYm
s} . (3.4)

The expansion coefficients Mj|,c S and M^'c s are called the internal and external multipole

moments, respectively. It has been shown that the expansion coefficients can be obtained from

the magnetic measurements by a Fourier analysis of signals with respect to the angle r| [Alla-

86].

3.2.4 Expression of current moments in terms of multipole moments

The multipole moments are useful as a means to represent the flux function outside the plasma,

but are hard to interpret physically. Polynomial current moments, on the other hand, are more

open to meaningful interpretation [Zakh-73], In this section, the relationship between the

multipole moments and the current moments is established.

Gittn's second identity va toroidal geometry states that for two scalar functions 2,{R,Z)

and y(R,Z), the following equality holds:

J (3.5)

Using A*y = -2ji|ioRj$ (2.1) and taking x to be a solution to the homogeneous GS equation,

A*x = 0, one finds

This can be rewritten in toroidal coordinates:

2x

ZL ((coshCcosn) r dx_ 3y \

With Eq. (3.7) any moment qx (subject to A*x = 0) of the current distribution j ^ can be

computed in terms of a line intefral of the flux and poloidal field over a -̂surface enclosing thr

plasma column. Equations (3.3) and (3.4) can be used to obtain expressions for the expansion

in toroidal multipole moments of both y and dy/d£, and these expressions can be substituted
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into Eq. (3.7). The resulting expression can be simplified by observing that A*x = 0, so that %

can be expanded in the complete set of toroidal harmonics (3.3). Writing

{4Vm > ^ } (3.8)
m=0

the integration over r\ in (3.7) yields an expression for the current moment in terms of a,,,, Mm,
pm-i/2> Qm-i/2> pm-i/2 ^ d Qn-i/a- This expression can be simplified further by noting that

Pi-i/2(coshO <£,.i/2(coshC) - P^i/z^oshQ QLi^coshQ = (sinhC)1, (3.9)

such that the Legendre functions drop OUL This yields

(3-10)

where 5^ is the Kronecker delta, and the a,,,* are constants which only depend on the choice of

% and are determined through Eq. (3.8).

Equations (3.8) and (3.10) are prescriptions by which expressions for the current

moments qx in terms of the multipole moments can be obtained. Note that the only restriction

on x is that it is a solution to the homogeneous GS equation. Thus it is possible to choose %

such that the resulting current moments correspond to the usual polynomial current moments

introduced in [Zakh-73] and often used in tokamak research. Some other families of solutions %

to the homogeneous GS equation are given in [Braa-86a]. Every % in such a family may be

expressed in toroidal coordinates by Eq. (3.2), and subsequently expanded in the manner of

Eq. (3.8).

The summation rule

^ X £ (3.11)

provides the basis for derivation of many other summation rules that serve to find die expansion

of functions % m toroidal harmonics. Interesting expressions in this respect are of the form

£ Amsinh(; Q^,.1/2(cosh(;)cof(inT)) or £ AmsinhC Qjn.^coshQsinOrrn). Defining two

differential operators:

! ^ (3-12)
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and using (3.9), it is very easy to prove that

D? [sinhC 0Liy2(cosh0] = (m2- J) [sinhC <&_1/2(coshC)]. (3-13)

Obviously, D^, and De commute. These two operators can be applied a number of times in

succession to Eq. (3.11). This results in right-hand sides of the form required, i.e. a

summation related to an expansion in the complete set of solutions to the homogeneous GS

equation (3.3). Likewise, the left-hand sides are related to the expression in toroidal coordinates

of the polynomials defining the current moments (Table 3.1 and Eq. 3.2). Thus one has a

straightforward, though tedious, method of obtaining the expansions of Eq. (3.8).

A particularly useful set of polynomials xn generating current moments is given by

X. - R" I ( - 4 ) " k ^ [ I T . «*2) (3.14)
£o k!(k+l)!(n-2k-2)! LRJ

where U denotes rounding to the nearest smaller integer. These polynomials satisfy A*xn = 0.

Expressions of current moments qx generated by the polynomials xn °f «!• (3-14) in

terms of the multipole moments were derived for the first few values of n (see Table 3.1). The

result for x = 1 is in accordance with that given in [Desh-83]. The results for other choices of X

have not been published before.
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Table 3.1: Expression of current moments in terms of the multipole moments

X = Xo - 1 ; (total current)

= % j = Z: (upward displacement of current centre)

2
X = X2 = R : (outward displacement of current centre)

J_o2 r - r ( R
2

J t ) d S = f^E^(m2-^)Mi;c

; = X3 = R Z: (skew ellipticity of current distribution)

tJ m=0

2 2 1 4
X=X4 = R Z - j R : (vertical ellipticity of current distribution)

= f( (RV-iR4) j , ) dS = - ^ £ (m2
+f) (m2-!) M^c

jj 3X^0 m=0m=0

X = Xs = R Z ~ | R Z: (upward triangularity of current distribution)

,J = f ( (R2Z3- |R4Z) J, ) ds = -
m=0

X = X6 = R 2 ^ - 1R 4 Z 2 + \ R6: (outward triangularity of current distribution)

6 [( / D 2 7 4 J - V j u 6 . \ ._ 4V2R,, V 4 13 2 d 5 w 2 K Mi.c
/?x= !( (R Z -jR Z -t̂ R ) j # j dS = T 2 L ^ m "^T111 "T^ ( m " ^ M«»

36 Chapter 3 - Multipole and current moments



3.2.5 Acknowledgements

The author would like to express his gratitude to Dr. N.J. Lopes Cardozo for many inspiring

discussions and careful reading of the early versions of this letter. In preparation for this final

version, the criticism by Dr. B.J. Braams has been invaluable.

This work was performed under the Euratom-FOM Association agreement with

financial support from NWO and Euratom.

Chapter 3 - Multipole and current moments 37



3.3 Interpretation of the current moments

3.3.1 Approximation of the current density profile from the current moments

Having obtained the current moments, the information present in these moments can be used to

reconstruct the current profile, provided a choice for the radial distribution of the current profile

is made, since the moments only contain information on the total current flowing and its

poloidal distribution. This section presents a way to perform such a reconstruction.

The inner product (Xi»Xj)w is defined by (XiOCj)w = JwXiXj d s where w = w(R,Z) is a

weight function, and the X\ are the generating functions for the current moments that have been

introduced in the previous section. The integration is over the R-Z plane. The corresponding
1/2

norm is given by IIXjllw = (XiOCi)w .

By means of the Gram-Schmidt procedure [Mors-53] the functions Xi a r e

orthonormalized with respect to the inner product (Xi>Xj)w This yields a set of functions £j

satisfying A% = 0 and (£j£j)w = 5^.

By analogy with (3.10), current moments q^ = Kj j ^ dS = (£;,w JA)W are defined.

Then
oo

ft-XfUiw (315)

i=0

is the best approximation to j ^ in the space spanned by {^w}. Note that this expansion is not

necessarily a solution to the GS equation because it is not of the form JA = R'ViOy) + R/2(\|/).

The expansion (3.15) should converge quickly, so the zeroth-order approximation to j * ,

JA, should in some sense be close to a realistic current profile. Note that from (3.15) follows j *
o

= q^N, so that this demand is in fact a restriction on the shape of w. Also, w must be such that

it produces a well-behaved inner product, or, in other words, w must be a function of rapid

decay (i.e. fall off more rapidly than the inverse of any polynomial in R and Z), such that

(Xi'Zj)wis integrable for all (Xi»Xj}- These two considerations lead to the choice of a Gaussian

for w:

i r <R-Rw>2 (z-Zw)S
w = expl ,, 2 - 2 I- (3.16)
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Fig. 3.1 Orthonormal functions £,
weighted with w (Ryy = 0.72 m, <% = 0.1
m). The toroidal current density may be
expanded in these functions, while the
expansion coefficients can be obtained in a
fast way from the magnetic measurements.
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The normalization of w is such that lllllw = 1. Rw, Z ,̂, o R and cz can still be chosen. Ry,, Z^,

will typically correspond to the centre of a current distribution, while aR and o z correspond to

its width.

The orthonormalization of the set %\ m Eq- (3-14) with respect to the inner product

defined above yields a set of £j. The functions 4;W (i = 0,...,6) are displayed in Fig. 3.1 (for

simplicity, Zw=0, cR = oz = <yw was taken).

In general, the expansion (3.15) is truncated at some low mode number. It is important

to observe that the %i do not form a complete set. Nevertheless the total current, current weight

centre, etc. can still be produced accurately.

When applying this method in practice, the approximation (3.15) can be optimized by

choosing an optimal Rw to fit a particular measurement. This is achieved by setting

Rw = {.<hf<h)m (see Table 3.1).

3.3.2 Definition of characteristic parameters from the current moments

The relation between the current moments and the spatial distribution of current has been

elucidated in the previous section. It is clear that it must also be possible to obtain values for the

position of the current weight centre, the current distribution ellipticity etc. from the current

moments. Below, a way of defining these quantities is suggested.

Moment Definition Interpretation (unit)

0 Ip = <70 Total current (A)

1 Zcur = qi/q0 Vertical displacement of current centre (m)

2 Rgm- = ^[qJqQ Horizontal displacement of curr. centre (m)

3 es
 = ^~[*?3 a) Skew ellipticity of current distribution (m3)

( 2 n2\
4 Ey = — | q4 5— + j — Vertical ellipticity of current distr. (m4)

j—2~ Upward triangularity of current distr. (or)

( 4 «2 2 «3\

q6 ^ + 3 ' 2 - J-J Outward triangularity of current distr. (m6)
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The definitions of ihe moments 0,1 and 2 ate trivially obtained from Table 3.1. The definitions

of the higher-order moments arc such that they do not depend the total current or on the location

of the current centre.

3.4 Application to RTP

3.4.1 Determination ofmultipole moments from the measurements

The multipole moments can be computed from volume integrals over the current distribution

inside (internal moments) and outside (external moments) some control surface C = Co [Alla-

86]. If this control surface intersects a region with non-zero current, then the moments are

dependent on Q). However, if this control surface is chosen such that it lies completely within a

currentless region and the only current flowing inside the control surface is the plasma current,

then the moments are independent of the control surface and the internal moments correspond to

the plasma current and the external moments correspond to external coil currents. Of course the

expansion of \f is only valid in the currentless region, or, more precisely, in the section of

space between two C, = constant surfaces (a toroidally annular region) where the current density

is identically zero [Brus-84].

If the control surface C = Co can be chosen to coincide with a set of magnetic pick-up

coils, then the determination of the moments (internal and external) from such measurements

becomes particularly straightforward. It has been shown that the expansion coefficients can be

obtained from the magnetic measurements by a Fourier analysis of signals with respect to the

angle r|[Alla-86].

However, at RTP the radial and poloidal components of the magnetic field are not

measured at the same minor radius (p = const) surface. Therefore the moments are determined

by making a fit of the radial and poloidal magnetic field measurements to the relevant

expressions in terms of the moments with the moments as regression variables:

M m
m=0

Mmax

m=0
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where the f and g are known functions that can be found from Eq. (3.4) by taking the

appropriate derivatives. The value of M,,,,, is found from the requirement that the regression

must be overdetermined. If N^ is the number of poloidal field measurements and N^ the

number of radial field measurements, then

„ N,. + N c + 2
= min

where M m u is some preset maximum. A sensible choice for M , ^ can be made by studying the
effect of measurement errors on the determination of the moments. This is discussed in the next
section.

3.4.2 Sensitivity to measurement errors ofmultipole and current moments

The multipole expansion provides an accurate description of the flux outside the plasma, but the

convergence of the expansion of the internal flux near the pole of the coordinate system (i.e.

near the centre of the torus) depends strongly on the location of this pole. Therefore the

reconstruction of the internal flux near the pole generally requires a high number of moments,

and if the expansion is truncated at a low mode number the reconstruction will be bad, even

though it is good further away from the poie. Note, however, that the pole generally lies within

the plasma, such that the reconstruction is not valid in that region anyway. The reconstruction

of the external fields is less sensitive to the location of the pole.

The current moments are computed from the internal multipole moments and describe

the amplitude, location and shape of the current distribution (section 3.3). Their value likewise

does not depend on the choice of pole and provides a reliable source of information on the total

current and the poloidal distribution of the current density.

In this section, an error analysis is carried out for the determination of these moments in

the specific geometry of the Rijnhuizen Tokamak Petula (RTP). RTP has a circular cross-

section, around which measuring coils and flux loops are positioned (Fig 3.2).

Once a choice for the coordinate system is made, three sources of errors can be

distinguished: (1) systematic errors due to e.g. misalignments of coils or calibration errors, (2)

measurement noise and (3) computational inaccuracies in determining the moments using either

a Fourier analysis or a regression method as described in the previous section.

It has been shown [Alla-86] that for an aspect ratio of 3.16 (whrch is close to the RTP

aspect ratio R/a = 3.38) and measurement errors of 1%, it is very difficult if not impossible to

determine any but the first four multipole moments.
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10

13

14

15

1 circular limiter
2 ECE polychromator
3 top-bottom limiter
4 heterodyne ECE
5 magnetic pick-up coils
6 neutral particle analyzer
7 transmitted power measurement
8 ECRH
9 soft X-ray pulse height analyses

10 X-ray tomography
11 visible light tomography
12 muKi-channel

•rterterorneter/polarirneter
13 2 mm interferometer
14 flux loops
15 hard X-ray monitor
16 Thomson scattering
17 visfcle light spectroscopy

Fig. 32 Schematic of RTP {top view) displaying the toroidal location of the main

diagnostics.

The combined effects of the enors (2) and (3) on the determination of the moments have

been investigated for the case of RTP. Wire model simulations of the plasma and full

equilibrium simulations were used. Below the results of both computational analyses are

presented.

In the wire model, the plasma current distribution is simulated by means of a finite set of

current-carrying toroidal wires. Four wires were positioned in the centre of the tokamak to

simulate the plasma, and four wires at the locations of the external coil croups of RTP to

simulate the external currents. The currents through these wires and also the positions of the

plasma-simulating wires were varied, and the corresponding magnetic fields and fluxes in

measuring coils and flux loops around the torus were computed. The generated current

moments had, for the low orders that were studied, a greater range of variation man are

expected in reality. Subsequently, the multipole moments were determined both directly from

the known current distribution (cf. [A1U-86J) and by the method described in this article from

the measured fluxes and poloidal magnetic fields.
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Fig. 33 Reproduction error of moments

as determined using a wire model. The

vertical axis is the spread, e, of the

moments, recalculated from simulated

magnetic measurements, divided by their

range of variation over the simulations, R

(see text). The horizontal axis is the moment

index.

Fig. 3.4 Reproduction error of moments

as determined using a full equilibrium model

and function parametrization. This figure

should be compared to Fig. 33.

Fig. 3.3 shows die quantity e/R for internal and external muMpole moments and current

moments. Hie reconstruction error, e, is die standard deviation of die difference between die

known moment and die ffmrfff as computed from measurements perturbed with 3 % random

noise, as found from a larje number of calculations using different wire positions and currents.

The range, R, is die ranfe of variation of each moment The current moments labeled as

0,1,2,3 arc to be identified widi die moments 0,2,4,6 defined in die previous section; since an

up-down symmetric case is studied die odd current moments are all 0. The graph indicates that

(1) die accuracy of die moment determination decreases strongly widi increasing m; (2) die

determination of die external moments is less accurate than diat of die internal moments, and

bom types of multipolc moments are dcmmiucd less accurately titan die current moments.

It should be noted, however, tint the range of variation of die moments may not reflect a

range as occurring in a real experiment Therefore a similar study was done using Function
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1.0 1.2
R(m)

Fig. 35a Figure displaying the FTP vacuum vessel (solid line), circular limiter (dashed line),

top- and bottom limiters (shaded polygons), and pick-up coils (small circles) in a poloidal

cross-section. From the magnetic measurements (indicated by the flags departing from the pick-

up coils, flux loop measurements not shown), the internal and external moments are determined

as explained in the text, and the total poloidal flux outside the plasma is reconstructed. The last

flux surface touching any of the limiters is determined, and this is taken to be the plasma

boundary.

Panmetrization (see next chapter) using a realistic plasma equilibrium code. The results are

presented in Fig. 3.4. RIP plasmas were simulated and the corresponding measurements

computed. The measurements were perturbed with 3% random noise and the moments were

recomputed. The graph shows e/o, where e is defined u above while o is the standard
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Fig. 35b Figure displaying the contribution of the external field to the total poloidalflux. The

moments expansion makes it possible to distinguish between internal (plasma) and external

(field coils) contributions. The flags on the pick-up coils show the strength and direction of this

external field contribution, however not on the same scale as in Fig. 35a.

deviation of die moments, verms m. Due to die fact dm a realistic plasma model is used, die

distribi on of poloidal hannoaics m die flux functkm is different, and die reconstnictkm does

not deteriorate so dramatically with m as in Kg. 3.3. Remarkably, die current moments are

determined with an accuracy better duw 5% for m £ 3. The fact dutt bom here and in die

previous fifure die external momeats are more inaccuntediaodBodier moments is due to die

fact diat die external expansion contribute* less to die total flux at die measurement coil

positions dian the internal t * pansioa
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. 35c Contours of the *tre*ttk of the external magnetic field displayed in Fig. 35b. The
field flags are the same as in Fig. 35b.

3.4.3 Reconstruction of the magnetic field at FTP
A program has been wrinea to dnemiae dw multipole moments at RTP using the method
described in section 3.4.1. These momcis woe subseqnendy used to reconstruct die flux and
die magnetic field outside the plasma, aad * e external pan of die flux and the field in die whole
region widiin a toroidal coonfiaaie sarface £ « const widm the exwaal field coils. The position
and shape of die last flax surface louchiag the Umiler was also compiited. Strictly speaking, die
expansion is only valid outside * e latjest coofdiaaie surface ( • const diat touches the ptasma,
but since the plasma is nearly circular ate expansion was continued inwaid to die plasma
surface. Due to a sensible choice of tme pale Rp die error made in die flux determination near
die plasma boundary is smalL
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Fig. 3.5a shows flux contours outside the plasma for a typical RTP discharge, and the

plasma boundary. Fig. 3.5b shows the contribution of the external flux to the total field at the

same moment. Fig. 3.5c shows contours of the absolute value of the external poloidal magnetic

field.

3.5 Discussion
In the previous sections the multipole and current moments were studied. In the following the

relative merits of these two systems of expansion are discussed.

The current moments contain less information than the multipole moments (internal and

external). Firstly, because they can be computed from poloidal field measurements only; and

secondly because the current moments can be expressed as infinite sums of the internal

moments, as was demonstrated. It follows that the current moments are independent of external

currents. A great advantage is the independence of the current moments of the choice of

coordinate system. The internal multipole moment expansion, on the other hand, may require

many harmonics for an accurate description of the flux function if the pole is badly chosen,

even if the information contained in them is identical to that contained in the current moments.

Both systems of moments provide information on the poloidil distribution of current,

but not on the radial distribution. Note mat this is typical of the MHD plasma equilibrium

problem: in the absence of radial information from other diagnostics than magnetic

measurements, all equilibrium solvers have to restrict the class of possible solutions in the

plasma by assuming some radial profile shapes. Due to the toroidal effect and ellipticity of the

plasma it is sometimes possible »o extract some information on the radial distribution of current,

but RTP, being circular, is a typical case where mis is extremely difficult

The multipole moments, unlike the current moments, provide information on the total

flux and field outside the plasma and inside the external conductors. Thus it is possible to make

a link with a Grad-Shafraoov solver at the plasma boundary, providing a way to solve the basic

MHD equilibrium problem mentioned at the beginning of this chapter.
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4. Function parametrization

4.1 Introduction
This chapter is devoted to the method of Function Parametrization (FP) and its applications to

several tokamaks. Section 4.2 is a reproduction of the paper Function Parametrization: a fast

inverse mapping method [Mill-91b] in which a mathematical description of die method is given

and die application of die mediod to the Rijnhuizen tokamak RTP is discussed. Section 4.3 is a

reproduction of die paper Application of Function Parametrization to the analysis qfpolarimetry

andinterferometry dataatTEXTOR [Mill-91aJ.

Chapter 4 - Function Parametrization 49



4.2 Function Parametrization: a fast inverse mapping method

B .Ph. VAN MIUJGEN, N.J. LOPES CARDOZO

4.2.1 Abstract

Function Parametrization (FP) is a method to invert computer models that map physical

parameters describing the state of a physical system onto measurements. It finds a mapping of

the measurements onto the physical parameters that requires little computing time to evaluate.

The major advantages of FP over other analysis methods are: it is quite general; it is fast,

allowing real-time control of experiments; it allows a thorough error analysis; it can provide

insight into the structure of the computer program used to model the experiment; it can be used

to analyze sets of dissimilar measurements; it can be used to study the adequacy of certain new

measurements for determination of specific physical parameters.

FP is tested on the reconstruction of plasma equilibria from magnetic measurements. As

a result, some important parameters describing the plasma state are shown to be recoverable in a

fast and reliable manner.
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4.2.2 Introduction

In many experimental situations, the physicist is faced with the problem of interpreting a set of

measurements which are implicitly related to the physical parameters of the system under study.

In many cases, a model is available that allows explicit simulation of measurements given the

physical state of the experiment: the model is a mapping of physical parameters onto

measurements. The problem of data interpretation is to find the inverse of the mapping.

However, if the model is complex, this inverse mapping may be hard or impossible to

find, or it may not even exist. If a computer model of the experiment is available, the

experimenter involved in the interpretation of a set of measurements is then forced to run the

model many times, each time adjusting the physical parameters until suitable agreement with his

measurements is obtained. If the number of experiments to be done is large, then this iterative

solution may become very time-consuming to the point of hindering further advances of the

research.

Function Parametrization (FP) is the name for a collection of techniques that tackle the

problem of finding an inverse mapping of a computer model systematically. An important

ingredient is the reduction of dimensionality of the measuring space such that redundant

information is rejected. This procedure must be carried out with great care in order not to

discard significant data. The inverse mapping is determined by analyzing a database of

simulated experiments. The result of the effort is a simple mapping of a set of measurements

onto the physical parameters of the system.

FP is quite generally applicable to many problems of interpretation in modern-day

physics. It allows a fast interpretation of measurements, up to the point of real-time control of

the experiment. In addition, it can supply insight into the structure of the computer model

describing the experiment by displaying relationships and dependencies between parameters.

FP can be used to predict the relevance of a new type of measurement to the determination of a

specific (set of) parametcr(s) even before the measurement device is built. Finally, FP allows a

thorough error analysis to be set up, making a clear distinction between systematic and

statistical errors, which may not be straightforward with the iterative solution methods

mentioned above.

The method of Function Parametrization was first formulated by H. Wind at CERN

| Wind-72; Wind-84), where it was applied to the problem of track finding. The method was

then applied to equilibrium determination at ASDEX by Braams, Jilge and Lackner [Braa-86b].

Their work was continued by McCarthy IMcCa-86].
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FP relies primarily on well-known statistical methods and the basic principle has been

elucidated briefly in a previous publication [Braa-86b]. This paper attempts to provide a

comprehensive description of the method. New additions presented are: (1) an explanation of

the behaviour (exponential decay) of the eigenvalues in principal component analysis; (2) a

demonstration of the so-called Latent Root Regression; (3) the rationalization of cutoff criteria

determining the dimensionality of the regression; (4) a detailed error analysis method. FP is

demonstrated with an application to tokamak plasma physics.

4.2.3 Theory of Function Parametrization

4.2.3.1 Introduction

We consider the situation where a physical model of an experiment is available that allows

computation of measurements if the state of the system is known, but where the model is

complex enough such that inversion is difficult or impossible.

The state of the physical system, p, is modelled in terms of a finite set of Np parameters

(Pj,...,pN ) = j? (Appendix 4.2.6.3 provides a table of notation). Often physical quantities

describing the system are functions of e.g. space, and these quantities need to be represented in

a parametric form in this formalism (hence the name 'Function Parametrization1). This

necessarily involves a reduction in the number of states representable within the context of the

parametric form of the model with respect to the full model. But because we are only occupied

with those physical states and measurements that are described by a computer model it is

always possible to cover all relevant system states by parametric representations.

The Nq measurements that are made on the physical system in the state/? are written as a

vector (qj,...,qNq) = q*. The computer model PL that allows computation of q* from p* can be

understood to be a mapping q* = fi)(p*), which can be non-linear. Within the context of the

model this mapping is exact. If the model is to make any physical sense, the computation of q

should be stable against small variations in p*. On the other hand, it is obvious that most models

should be considered to be essentially projections (the information content of the measurements

is less than that of the physical parameters), i.e. two physical states p* and p*\ p* * p*', may

map to the same measurement: q* = q'. Due to finite measurement accuracy this can be

formulated even stronger two different physical states p* and p*' may map to two measurement

vectors that are indistinguishable given a certain limited measuring accuracy, llq*-q*'ll < 5 for

some norm. Therefore the inverse mapping of Kt is not single-valued. This situation reflects

either a fundamental problem in the modelling procedure or a lack in number or accuracy of the
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measurement data. The problem can be circumvented by restricting the parametrization of p by

means of the choice of {?, such that the inverse mapping, if found, would be single-valued.

Even if this is not possible FP can find an inverse mapping, albeit that some components of p

will be ill-determined, reflecting the non-single-valuedness of the inverse mapping. It will also

be shown in the following how the ill-determinedness of some parameters can be detected.

Thus, apart from its practical use as an analysis tool, the method can also be used to obtain

rudimentary insight into the structure of the model \ ) or even the adequacy of the measurements

for the purpose of determining the physical parameters p .

The method of Function Parametrization (FP) consists of three steps: (1) a database is

constructed containing a large number (N) of simulations p* = | ? a (a = 1.....N), where p*a is

chosen to lie in the subspace of RN p covering (at least) all actual physical states expected to

occur in the real experiment. The model fft. is used to compute the corresponding measurements

q* = cfa = Sl(i?a). (2) the data base is subjected to a statistical analysis, which yields a mapping

p* = F*(q*) + ^.where ^ is a small error term. The statistical analysis can be subdivided into

two parts: (a) a dimension reduction step yielding q = jf (q) and (b) a regression yielding p =

/ ( q ) . Thus F*(qf) = ?(gOi)). (3) the mapping F* is used in data analysis to interpret real

measurements q\

We make a distinction between a reduced set of parameters {pj, j < Ny} , N id < Np, that

are sufficient to identify the state p uniquely, and the remaining parameters {pj, N id < j <; Np)

that are therefore dependent on {pj, j £ Nid) in the context of the model fk. Note that we do not

exclude the possibility that there may be some hidden dependencies (e.g. through some external

constraint) between the {p^ j £ Ny) . Generation of the data base involves selecting values for

the parameters {pj, j £ N i d) , and feeding them to the model N) which will then yield both

(pj, N id < j <. Np) and q. Appendix 4.2.6.1 gives some suggestions for parameter selection.

4.2.3.2 Dimension reduction

There are two reasons for performing the dimension reduction j?(q). Firstly, an attempt to fit

the components of p* with linear, quadratic etc. functions of the raw measurement vector q in

order to determine the mapping p* = P(q) + if is bound to fail if Nq is large. If we take F* to be

a polynomial model of degree k, it needs of the order of N*/(k!) fit coefficients for each

physical parameter. The number of model simulations needed to determine these coefficients is

considerably larger. Therefore a method by which the dimensionality of the measuring space

can be reduced without discarding essential information is required.
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Secondly, the measurements are likely to exhibit mutual (linear) dependencies that

would make the regression 7*(q) unstable. Dimension reduction provides a means to stabilize

the regression by removing collinearities.

The well-known method of Principal Component Analysis (PCA) achieves dimension

reduction by discarding linear combinations ('principal components') of the measurements that

show little variation over the database, assuming that they have little relevance in the prediction

of parameter behaviour.

This may in some cases not be the best method, because it may be that important

information is concealed in principal components that show little variance (e.g. a physical

parameter is proportional to a linear combination of the measurements that is almost, but not

quite, constant in the database). Conversely, it may be that little information is contained in

components that show a large variance (but are largely uncorrelated to the physical parameters

of the problem). If either of these are the case, then Latent Root (LR) analysis may be of use.

Principal Component Analysis

The physical parameters p* and the measurements q are normalized. The normalized vectors arc

called p and q:

a a

xfxf = (x^x^VOj (j = 1 Nx; a = 1, ...,N; x = p,q) (4. lb)

Here <x>- is the average value of x= in the data base, and o. its spread (i.e. standard deviation).

The dispersion matrices of p and q arc computed from:

(ij = 1,.... Nx; a = 1, ...,N; x = p,q) (4.2)

The diagonal of D* contains the squared standard deviations of the xa, which were normalized

to 1. The off-diagonal elements of £>* are the correlations between the components of xa. Dx is

a real, symmetric, positive definite matrix. The eigenvalues of D* are sorted such that

Xj £ X\ > ... > A.jJx £ 0. The corresponding orthogonal eigenvectors DX/e*j = X*?j arc

normalized, 1̂ 1 = 1.
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We define new 'transformed' variables

x** = ^ - x " . 0 = 1 , ..., Nx; a = 1, ...,N; x = p,q) (4.3)

Thus, the components x? of x a are linear combinations of the x". They have a standard

deviation of "\j X-, and are uncorrelated within the data base. In the following, we shall omit the

index a.

By inspection of the eigenvalues, some important remarks can be made about the model

5 l If Si is a purely linear model, then for x = p,q all A.* for j > Nid are equal to 0. In any model,

if a component of x is linearly dependent on one or more of the independent components of x ,

then the variance of the dependent component is accordingly reduced and the linearly dependent

part of its variance is added to the variance of the independent components.

This is an important observation and we shall now illustrate it with a simple example.

Suppose we have two measurements qx and q2, both normalized in the sense of Eq. (4.1), i.e.

o(<li) = 0(02)= 1- Suppose that q^ is of the form

q2 = q*+pq1, (4.4)

where q2 is linearly independent of qj and P is the covariance between ql and q2. Then

1 = 1 - P2. Computing the dispersion matrix yields:

"•(if)
Eigenanalysis yields eigenvalues Xj = 1 + P and ^ = 1 - p, and eigenvectors

such that, according to Eq. (4.3), q*i = (q t + q^A/2 and q2 = (q! - c^W^. Using these

expressions to compute the variance of qh and <J2 we find o 2 ^ ) = 1 + P = A.x and o 2 ^ ) = 1 —

p = h}. The covariance becomes cov(q"i,q*2) = (N-l)"1 ^ q * ! ^ = 0, as required. This example

clearly demonstrates how the variance a 2 ^ ) is incremented by P and the variance a2(q*2)

decremented by the same amount (with respect to c^qi) and o 2 ^ ) , respectively) due to the

dependency of <& on (\x given by cov(q1,q2) = P-
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Now suppose we have not two, but Nq measurements. Suppose the measurements have

mutual linear dependencies given by:

q i = q i . <b = «6 + pV8. (fc^qj + pqj + Pql.etc. (4.7)

Assume P«l. Thus cov(qitq^ - p (i *• j). This is a fictional set of measurements in which all

measurements are equivalent; they all contain an amount of linearly independent information (qj)

and and they all suffer the same amount of collinearity (P) with all other measurements. By

analogy with the preceding example, the q\ have standard deviations given by

<?{qd = 1 + (Nq-i)p - ( i-l)p = 1 + p(Nq - 2i +1) (4.8)

This implies, for P small,

^ 1 (4.9)

It follows that XjA-, = e ( l l ) 1*1-2*> (exponential decay of the eigenvalues).

From the fact tiiat the dispersion matrix is computed from the normalized vectors x it

follows that if x* shows any linear dependencies between its components at all, A.* > 1. In an

almost purely linear model, where NM » Nx - N^ is the number of components of x* linearly

dependent on the minimum set of NM state parameters, the A,* will exponentially decrease in

amplitude until j « Nx - Nw, when they fall to zero sharply. In a model with complicated as

well as linear dependencies (at in the second example above), the X* fall to zero with j

approximately exponentially. The steepness of decay depends on the amount of collinearity

between the components of x (in the example above: small collinearity means P small, so the

decay is slow). We introduce a collinearity parameter P ^ , given by

The more non-linear the model, tfae slower the decay and the closer p^u comes to 0. Note

however that the parameter ranfes also influence the decay: if the parameters pj, j^lv-.N^

only vary within narrow raofes a linearized model can pve a fairly accurate approximation of a

more complex model and the decay of eigenvalues will not be slow.

The Xj are called the 'principal components' of the vector x. If real measurements are

expected to suffer a relatrve meaturing error of e,k is aiiurned that ftote prindpd components

which show a variance over the database of X* < (3c)2 are both unimportant in the regression
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and difficult to obtain from teal measurements, and we discard them. This is equivalent to the

statement that the 'signal' of a principal component should be 'significantly above' (i.e. 3e) the

noise level e. The remaining Xj, j = 1,...,NS are called 'significant variables'.

Latent Root Analysis

The objective of the Latent Root (LR) analysis [ Wcbs-74] is to find those linear combinations

of the normalized measurement vector components qj, j=l,...,Nq that show least correlation

with a physical parameter r^ within the database, and eliminate this linear combination from the

regression analysis. We introduce an 'observation vector1 s*:

» = (4l>—.4Nq>Pk) = {q. Pk) (k = U-^Np)- ( 4 1 1 )

Note that we have again omitted the superscript a for convenience. For each simulation in the

data base, Np such 'observation vectors' exist, and they contain the value of all simulated

measurements and the k* physical parameter. By analogy with Eq. (4.2), we compute the

dispersion matrix:

;ksf ( i j = l,...,Na+l) (4.12)

The diagonal of £* again contains the squared standard deviations of the components of sk,

which were normalized to 1. The off-diagonal elements are the cross-correlations. Of special

interest are the £ J ^ t ) elements, the correlations between p^ and the measurements.

Analogous to the procedure described above the eigenvalues and corresponding

eigenvectors of £* are computed. The eigenvalues Ajk are called latent roots and the normalized

eigenvectors r* are called latent vectors. They satisfy

fifl.l (4.13)

The latent roots and vectors have some interesting properties. For instance, if, for some j ,

Xk - 0 while (rk)Nq+J # 0 (where ^)nn+i is the last component of fk) then Eq. (4.13;

demonstrates that there exists an exact linear relationship between p^ and q:

ft"-1

Chapter 4 - Function Parantetrizatum 57



No regression is necessary as Eq. (4.14) gives a direct relation between measurements and the
physical parameter p^. But exact linear relationships are hard to find in reality, of course, and
this situation will seldomly occur.

If, for some j , both \j = 0 and (Fj )nq+\ = 0, there exists an exact linear dependence
among the measurements. This non-predictive singularity can be removed by discarding the
corresponding fr, where

A^i* ( 4 1 5 >

Again this ideal singularity with exact linear relationships between the measurements will hardly
ever occur in reality, but there may very well be near-singularities with Xj < y and (f • ) N q + 1 < S,
where y and 5 are small numbers. The same discarding procedure can be applied once the
discriminatory levels y and 5 are set

The improvement upon the simple PCA procedure is obvious: linear combinations of the
measurements that show large variance in the database but have little or no correlation to the
physical parameters would have been included in the regression following PCA, but can now
be detected and discarded. A disadvantage is that the computing time required both for
determining the mapping P and its evaluation for real measurements takes considerably more
time than the PCA procedure.

4.2.3.3 Regression
In oider to obtain the mapping P, we perform a regression of pj in terms of functions of q*k for
each j . We remark that it is also possible to regress p"j, rather than pj, but the reduction in
dimensionality of the fitting problem thus obtained generally does not compensate for the
increase in complexity of the results. We demonstrate the procedure with a simple polynomial
fit, which takes the form
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where Nn < Ns, the <(>n are suitable polynomials of the n* degree, 6j = *\ Aj and the c's are the

regression coefficients. The multi-dimensional polynomial functions are referred to as 'basis

functions'. Nj is the number of q; used in constructing linear basis functions, N2 the number

used in constructing quadratic basis functions, etc. The Nn's can be chosen equal to Ns for all

n, but generally results are more stable with respect to measurement noise if only Nj = Ns, and

the higher-order Nn's are taken smaller. It is actually possible to use stability with respect to

measurement noise as a selection criterion for Nn. We shall demonstrate this in section 4.2.4.4.

It is now possible to write Eq. (4.16) as a simple sum over fit coefficients multiplied by basis

functions, which demonstrates that even for non-linear models the regression problem is linear.

We have normalized the significant components to their standard deviations 6j = "\ Aj (where

we have omitted the superscript q) such that the arguments of the polynomials <>n are

normalized. This normalization is not strictly necessary. The qyS; are linearly independent:

cov(q*j/8j,qy?Jj) = 5jj, where 8^ is the Kronecker symbol. However, the $n(q7Bj) should also

be linearly independent for all n and i in order for the regression to be well-determined. The

Hermite polynomials H,, satisfy this requirement because, if •„ = H,,, cov($n(y),$m(y)) = &*„„, if

y is a random variable with a normal probability distribution, which makes them well-suited to

our purpose.

From Eq. (4.16) one may deduce that the total number of basis functions, Nw, is given

by:

"„
^ . (4.17)

where No z 1 and Nw is the order of the fitting polynomial (4.16). The Na's must be chosen

such that NM < N to prevent the regression from being underdeiermined, and preferably

N b f «N.

The regression is performed, and the fitting coefficients c in Eq. (4.16) are found. The

regression is an ordinary linear least-squares regression. Some caution in carrying out this

regression is necessary, because although the principal components are linearly independent,

the basis functions that are constructed from them may show small collinearity. But if small

collincarity is present, the fitting coefficients c may take on huge meaningless values that do not

show up when checking the result of the regression on the unperturbed measurements in the

database (see section 4.2.3.4), but can seriously influence the interpretation of real
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measurements. Therefore, the significant variables should be perturbed with small random
variations £p[t prior to the regression so as to destroy this remaining collinearity completely,
while leaving all significant information intact. The amplitude of £,,„. is not critical as long as it
is small: epte ~ e/3 is a safe choice (where e is the typical relative measurement error). Other
methods of regularization of the regression might also be used.

Thus, we finally have obtained the mapping P, which is given in terms of the averages
and standard deviations of if in the database, the eigenvectors and eigenvalues of D\ the choice
and number of basis functions, and the fitting coefficients c.

4.2.3.4 Eitor Analysis

The systematic error in the reconstruction of physical parameters by means of the method

described above is due to several distinct sources: (la) the (analytical) model itself is only an

approximation of the physical system and the simulated measurements do not contain as much

information as the physical quantities in toe model, (1b) the parametrizatioa of the model (i.e.

the computer model) is a further limitation in the description that may lead to errors, (lc) the

dimension reduction as described in section 4.2.3.2 reduces information content of the

measurements, and (Id) the regression, being a least-squares fit, reduces the information

content even further. The statistical error in the reconstruction is due to (2a) measurement

errors, (2b) digitizing noise in the measurements, and (2c) computational inaccuracy in the

evaluation of £ . In the following, we indicate how the combined effect of these systematic

(except for (la)) and statistical errors can be estimated. Note that random measurement noise

having a normal (Gaussian) distribution may lead to skew statistical errors in the physical

parameters. We do not investigate this here, but it is easy to evaluate this skewness numerically

using the mapping P.

Definition of error measures

We study the reliability and sensitivity to measurement noise of the mapping £ found in section

4.2.3.3. The systematical error introduced by the mapping can be estimated by computing die

frnfaitfri^ data in fhr datahftff vv^i **»* Tmrping P and comparing

Ciem to the stored values pj. The systematic reconstruction error is defined as

(418)

where a runs over all N simulations, e?* is the average systematical error over the data base of
iii i

thej parameter.
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The statistical error in the computation of Pj can be estimated for any observation q
individually by

where J3 runs from 1 to N lUt (chosen arbitrarily but not too small) and "e p is a vector of random

variables. The standard deviation of the i component of ? p , o(Epj), is equal to the

measurement error in the i measurement e1"1 is a function of q and therefore variable over

the data base. We compute e*j* at the centre of the data base parameter space. Nevertheless the

statistical error can also be evaluated for real measurement data, giving a precise measure for the

noise contribution in the reconstruction error.

The combined effect of the statistical and systematic error, the total reconstruction error,

containing the effects of both the systematical and the statistical error can be estimated from

Wl 2 - <Fi<?a+^a) " Pja)> (4-20)
a

where a runs from 1 to N. Approximately, (E* 0 ) 2 -(e*Jf)2 + (E**) 2 .

If the spread of a parameter within the database is small, the error Ej may also be small

without predicting variations in the parameter correctly. Therefore the quantity Ej/Oj is

considered a better indicator for the quality of parameter reconstruction than Ej itself.

The error estimates (4.18) and (4.20) allow us to search for an optimal combination of

basis functions that gives mairn'MH? reconstruction accuracy while being not too sensitive to

measurement noise.

Reconstruction qualifier

The results obtained by FP are only valid for physical states within, or close to, the subspace of

the total physical state space covered by the data base. If a physical state lies within this

subspace, we know that the quality of die reconstruction can be estimated by means of the error

measures defined in the previous section. A measure for the reliability of the results is therefore:

Q=i5-Z-r-a^=^- <4-2»>

where f1*^ is the relative error that the transformed measurement i suffers due to the
measurement errors {e"J", i«l,...,N,}. Thus, Q is an indicator for "closeness" of a
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measurement to the "centre" of the subspace (of the total parameter space) that is covered by the

simulations. If Q = 1, the measurement is well represented within the database and the accuracy

estimates made above apply. If Q » 1 (Q > 4) for a particular measurement, the results obtained

by FP are extrapolations beyond the boundaries of the simulated subspace and no indication of

the accuracy can be given. Such an observation can be ignored, or, if it is known that the

measurements are not at fault, the data base can be extended to include the experimental

situations not covered in the existing database, or, if it is known that one or more specific

measurement signals are failing, these can be reconstructed by minimizing (4.21) while keeping

the correct signals fixed.

4.2.4 Application to theRTPtokamak

4.2.4.1 Introduction

Tokamak physics

We shall illustrate the procedure of FP with an example from tokamak plasma physics. A

tokamak plasma is a toroidally shaped ionized gas through which a large current flows in the

toroidal (•)) direction, aloof the externally imposed toroidal magnetic field (the geometry is

clarified in Fig. 4.1). The cunent produces a magnetic field in the poloidal (transverse) direction

which balances the outward -Vp pressure gradient force by an inward ~j x tf force (j* is the

current density). When these forces are equal and opposite, the plasma is in equilibrium.

Treating the plasma as a single-species ideally conducting fluid and assuming toroidal rotational

in variance, the equations governing die equilibrium (the pressure balance supplemented with the

Maxwell equations), can be written down in terms of the poloidal flux function y. The poloidal

magnetic field is given by

(4.22)

where we have adopted the usual cylindrical coordinate system (R.Z4). The equilibrium

equation can be written

where j , is the toroidal cwratt density, pty n the pressure, F(v)«RB# which ii related (o the

poloidal current density aad * denotes d/dy. This is known as the Giad-Shafranov (G$)

equation [Shaf-58]. It is a second-order dttfestatial equation with 2 source functions (p and F).

62 Chapter 4 - Function ParametrUmkm



If the source functions and suitable boundary conditions are given, a single solution \|f(R,Z) can

be found by solving the equation. In an experimental situation, however, the source functions

arc not known a priori.

0.40

•0.40
0.40 0.60 ' 0.80 1.00 1.20

R(m)

Fig. 4.1 Poloidal cross-section of the RTP tokamak.

RTP

The Rijnhuizen Tokamak Project (RTP) Tokamak is schematically shown in Fig. 4.1. The

experimental data consist of 12 poloidal field measurements (owfe at the locations indicated by

'pick-up coils' in Fig. 4.1), 12 radial field measuremenu (made using wire loops attached to

the liner) and a measurement of the toroidal field B^ so N,,« 25. The physical parameters of

interest are, e.g., the location of tfce plasma boundary or the current density at the plasma
centre.

Given the kind of measurement* available, solution of the GS equation is only possible

by making restrictive aasumptiOM win regaid to the source functions in Eq. (4.23) (generally

refened to as 'profiles'). Even thai the solution procedure is time-consuming: it consists of
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selecting the two profiles, solving the equilibrium, computing the corresponding magnetic data

and iteratively adjusting the profiles and other parameters until a satisfactory reproduction of the

real measurements is found. This procedure has to be carried out (9(100) times for a single

experiment lasting 100 ms in order to get an indication of the time-development of the plasma,

and several tens of experiments can be carried out each day. This leads to an intolerable burden

on the computer system with traditional equilibrium solver programs. FP provides the means to

make such analysis feasible.

4.2.4.2 Parametrization

In our example the reduced set of parameters {pj, j < N^} used in identifying the equilibrium

are the following. (1) Ip is the total current flowing through the plasma. (2) Bo is the value of

the toroidal field on the torus axis. (3,4) (Rgeo, Zgeo) is the location of the geometrical centre of

the plasma boundary in cylindrical coordinates. (5) a,^ is the minor radius of the plasma. We

have assumed the plasma to have a circular shape in a poloidal cross-section, and the flux

surfaces are taken to be circular as well. The plasma column is assumed to have up-down

symmetry with regard to the Z = Zfeo plane. (6) 5 is the 'Shafranov shift1, i.e. the outward

displacement of the magnetic axis with respect to RfW (5 = A/a^, where A is the Shafranov

shift in tn, see Fig. 4.1). 5 is closely related to the central pressure. (7,8,9,10) The remaining

quantities are profile parameters (ar,er,an,cn, explained below). Thus, Ny = 10.

The profiles are written down in a dimensionless form (unit profiles). The amplitude of

the profiles is then given by the other parameters, and the unit profiles themselves only contain

shape information. The unit profiles are chosen to be:

- l ) (4.24a)

Here y is a normalized flux coordinate: y « 0 on axis and y * 1 at the plasma boundary. This

choice of profile parametrization is motivated by the observation that measurements made on

typical RTP discharges can be well reproduced by equilibria generated using this

parametrization. The unit profiles I* and II, appearing in the HBT equilibrium solver [Goed-

84], are related to the pressure derivative (p1) and poloidal current (FF) profiles mentioned

above through:
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ABeBj
P'(V) = — - j - I K i l O (4.25a)

2or

FF(V) = — |r(v) - f n(V)| (4.25b)
or L 2e J

where A and B are eigenvalues of the GS equation and a is a dimensionless parameter
measuring the total poloidal flux: a = ^nBo/Oj (here Oj is the unnormalized flux at the
plasma boundary). A,B a and <b\ are determined by the MHD equilibrium code HBT.

Appendix 4.2.6.1 lists the values of the parameter ranges used for the creation of a

database covering the RTP experiment (N = 1000 simulations). The central value was found by

analyzing a typical discharge (R19900321.017) at t=50 ms. (in the so-called flat-top or steady-

state phase). We defined a %2'

(4.26)

Where em'"* is the measurement error in the i* measurement q™?**. We then computed an

equilibrium with arbitrary choice of the parameter values and computed X2 from the simulated

measurements qia We chose slightly different values of the parameters and iterated, thus

minimizing %2 until it reached a value close to Nq, indicating good reproduction of the

measurements. This equilibrium was taken as central value for the database. Note that the

profiles used are fairly broad, reflecting the current type of plasmas produced in the experiment

In the near future, more peaked profiles might become more common. Should the need for such

a change in paramctrization occur, the reconstruction qualifier Q discussed in section 4.2.3.4

will automatically signal this and a new database using e.g. narrower profiles can be

constructed.

4.2.4.3 Principal Component Analysis

We performed PCA exactly along the lines of section 4.2.3.2. First we determined the

eigenvalues of the dispersion matrix of q*. Fig. 4.2 displays the eigenvalues vs. their index

number graphically. As expected, they decay exponentially (cf. Eq. (4.9)). If we determine

PcoU (̂ q- (4-10)) from the exponential decay, ignoring the non-exponential tail for i > 20 that is

due to finite computational accuracy, it follows: P^^RTP)« 0.29.
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Fig. 42 Eigenvalues of the dispersion

matrix of q versus the eigenvalue index

number for the RTP database. The dashed

line is the line ln(X) = 3.68 - 0.878 i.

The second step in PCA is the

discarding of principal components. The

relative measurement error in the magnetic

measurements at RTP is approximately 3%.

This suggests (cf. section 4.2.3.2) a cutoff

at X = (30.03)2 which we have marked in

Fig. 4.2. Thus, keeping only 9 of the 25

principal components might already be

sufficient to reproduce the plasma

parameters within measuring accuracy. We

will investigate this further in the next

section.

4.2.4.4 Regression and error analysis

Regression based on PCA

Table 4.1 lists the error estimates defined in section 4.2.3.4 for the RTP database. We have

performed the regression along the lines of section 4.2.3.3, using the polynomial regression

model with Hermite polynomials.

Table 4.1:

Parameter

Plasma parameter reconstruction error analysis for RTP database
N, = 8, N2 = 3. (a's 2

I»
Central value 100000.
Spread, oj£ T_««

j

eT/Oj(%)
epoj(%)
«7/Oj(%)

0.22
0.0022
0.0093
0.0093
0.%
4.2
4.2

ind e's normalized to the

0.721
0.048
0.0039
0.0019
0.0043
8.0
4.0
8.9

0.133
0.13
0.062
0.014
0.064

47.
11.
48.

central value)

5
0.0617
0.13
0.12
0.011
0.12

93.
8.5

94.
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Table 4.1 clearly demonstrates how some parameters are easily recovered from the magnetic

data while others are hard to determine at all. The reconstruction of Ip (which can analytically be

expressed as a simple sum over the poloidal field measurements) is dominated by the statistical

error. The other parameters listed here have reconstruction errors that are dominated by the

systematical error.

Of course, many more parameters than the ones listed in table 4.1 are available to

describe the plasma state p. Tables like 4.1 can also be used to determine which plasma

parameters can be determined most accurately from the available measurements and are

therefore best suited for the purpose of giving a description of the plasma. In this manner we

have found that of the two most common sets of moments used in describing the magnetic field

outside the plasma, i.e. current and multipole moments [Mill-90], current moments are best by

far.

The error estimates (4.18) and (4.20)

allow us to search for an optimal

combination of basis functions giving

maximum reconstruction accuracy while

being not too sensitive to measurement

noise. The data in table 4.1 were compiled

from a reconstruction that was already

optimized. We shall now demonstrate how

we came to this choice of basis functions.

While esys decreases monotonically

with the number of basis functions, e11"1

increases, leading to an optimum (i.e.

minimum) in er". Taking too many basis

functions deteriorates the regression results,

because the higher-order basis functions are

more sensitive to noise.

Figures 4.3, 4.4 and 4.5 illustrate the behaviour of e*J* and e r" as a function of the

amount of linear and quadratic basis functions (N j and N2, respectively, see Eq. (4.8)). We

have selected amin and Rgeo as illustrations of the procedure. From Fig. 4.2 we expect the

reconstruction to be optimal at Nj = 9 in Fig. 4.3. In fact, what we see is that the first 5

principal components already contain the essential information necessary for reconstruction

Fig. 4.3 Reconstruction error in amin

as a function ofNj.
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Fig. 4.4 Reconstruction error in amm

as a function ofN2, Nj = 8.

of ^jn. The predicted minimum in er jC is

fairly broad (from Nj = 5 to 10), and taking

Nj anywhere in this range will not influence

the reconstruction significantly. Note that

taking Nx = 11 (= Nid+1 !) or more leads to

a significant reduction of e S j S but

unacceptable instability with respect to

measurement noise. We selected Nj = 8 on

the basis of graphs like Fig. 4.3 for other

parameters, keeping in mind that Nx should

be equal to Nid, approximately. Having

selected Nj, we proceeded along similar

lines for the selection on N2 (Fig. 4.4). N2

does not have a significant influence on the

reconstruction of amin as long as N2 ^ 6,

but it does on the reconstruction of Rgeo

(Fig. 4.5). Also, the computing time is a

strong function of the Nn's (see Eq. (4.5)).

This motivated us to select N2 = 3.

Regression based on LR

We have analyzed the same RTP database

with the Latent Root analysis method. We

found that in order to keep between 6 and 8

principal components, the discriminatory

levels y and 8 should be chosen y = 8 = 0.3.

The actual number of principal components

kept is different for each plasma parameter,

of course: e.g. accurate reconstruction of the

plasma current Ip requires less principal components than any other plasma parameter. This is

demonstrated by the listed number of principal components in table 4.2.

Also listed in table 4.2 is the reconstruction accuracy for each parameter. The numbers

listed should be compared to those of table 4.1. The Latent Root method in the case studied here

reduces the systematical error, while increasing the statistical error slightly. The total

Fig. 45 Reconstruction error in R

as a function ofN2, Nj = 8.
geo
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reconstruction error ercc using LR is slightly better than the one using PCA. For most plasma

parameters the difference is only slight, however, except for 5. LR has detected and removed a

non-predictive principal component for this parameter.

Table 4.2: Plasma parameter reconstruction error analysis for RTP database

using LR. Nj is equal to the number of principal components kept: Nprin,

and N2 = 6. (a's and e's normalized to the central value)

Parameter
Nprin

Central value

Spread, Oj
e s y s

£stat£t
e'^/oj (%)
erj7aj (%)

lp

6

100000.
0.22
0.0011
0.0090

0.0097
0.47
4.0

4.3

R

7

0.721

0.048
0.0036
0.0022

0.0043
7.6

4.6

8.9

amin

7

0.133
0.13
0.052
0.031
0.064

39.

23.

48.

5
7

0.0617
0.13
0.085
0.035
0.098

66.

27.

76.

4.2.4.5 Results

Figures 4.6 through 4.9 show the time

traces of some plasma parameters that were

obtained from real measurements using FP,

for RTP discharge R19900321.017.

Figure 4.6 shows the time trace of

the plasma current. After initiation of the

experiment, it rises quickly to 100 kA, to

remain in the 'flat-top' phase for

approximately 100 ms.

Figure 4.7a shows the time trace of

0.04 0.08
Time (s)

0.12

Fig. 4.6 Plasma current for discharge

R19900321.017.
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Rge0. Initially, there is a large oscillatory movement that is due to an imperfection in the plasma

position control. The FP signal can be compared to the A ^ signal, which is simply the position

of the weighted current centre with jespect Jo ihe R = 0.72 for central) position. This signal is

displayed in Fig. 4.7b, and compares well to 4.7a.

0.78

0.66 0. 0.04 0.08 0.12
Time <s)

0.78

. 0.74 h

0.70 h

0.66 0.04 0.08
Ttme(s)

0.12

Fig. 4.7a Plasma position for discharge

R19900321.017.

0.18

0.10 0.04 0.08
Time(s)

0.12

Fig. 4JS Minor radius of plasma for

discharge R19900321XH7.

Fig. 4.7b Horizontal plasma position

(traditional method) for discharge

R1990032L017. Note that for t < 0.03 s the

ADC signal exhibits saturation.

5.

4.

3.

2.

I.

0.
0.04 0.08

Time<s)
0.12

Fig. 4.9 Reconstruction qualifier for

discharge R199O032U017.
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Fig. 4.8 displays the time trace of the a ^ signal. During the fiat-top phase, it attains the

maximum value (0.178 m) dictated by the circular limiter (Fig. 4.1) within measuring accuracy.

Fig. 4.9 displays the reconstruction qualifier Q. Apart from spikes at the beginning, it

stays low (~2) during the entire shot, indicating reliable reconstruction.

4.2.5 Summary and Conclusions

4.2.5.1 Principle and Advantages of Function Parametrization

Function Parametrization is a method to invert computer models that map physical parameters

that describe the state of a physical system onto measurements. The method involves generating

and storing a large number of well-chosen simulations and statistically analyzing these. The

result is a mapping of the measurements onto the physical parameters that requires little

computing time to evaluate. The major advantages of FP over other analysis methods are: it is

quite general; it is fast, allowing real-time control of experiments; it allows a thorough error

analysis (as was demonstraied in this paper); it can provide insight into the structure of the

computer program used to model the experiment; it can be used to analyze sets of dissimilar

measurements; it can be used to study the adequacy of certain new measurements for

determination of specific physical parameters (even before the measuring equipment is built).

4.2.5.2 Power and limitations of Function Parawetrization

Generally, the computer model mapping the physical parameters onto the measurements

reduces information content, \Jt. the measurements do not represent full knowledge of the

physical system, or, in other words, the mapping is essentially a projection. This necessarily

means the inverse mapping cannot determine all physical parameters exactly. This problem can

be circumvented by restricting the physical parameter space, ix. by choosing a certain

parametrization of the physical system that limits the solutions of the inverse problem to a

certain class, provided knowledge is available to confidently make this restriction without

excluding essential parts of the physical state space. Alternatively, one may decide to accept

such Ul-determinedness of tone physical parameters as being inherent to die analysis of

inadequate measurements.

On the other hand, the wrawtmctr generally also contain redundant information. As

the inverse mapping method relies on regression analysis, large dimensionality of die

measurement space aad mutual (linear) dependencies between the measurements are

undesirable. Two methods aie sttffened to reduce the dineaannalityoffhe meowing space
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without rejecting essential information: Principal Component Analysis (PCA) and Latent Root

Analysis (LR).

PCA selects those linear combinations of the measurements that have maximum variance

within the database. Generally, these will also have the highest predictive relevance. However,

if the computer model is not very stable there may be combinations of the measurements that

show a large variance over the data base but have little relevance to the physical parameters.

Also, a specific parameter may be related to a subset of the measurements that show only small

variance (rather than all measurements). In these cases Latent Root analysis may improve the

solution of the model inversion problem, as it selects those combinations of the measurements

that have highest correlation with specific physical parameters.

4.2.5.3 Application to Tokamak Physics: RTP

The practical example of Tokamak equilibrium reconstruction presented in this paper

demonstrates that FP is capable of making a fast, accurate and reliable computation of plasma

parameters from the magnetic measurements presently available at the RTP experiment. As

soon as other relevant measurements become available (e.g. polarimetry or SXR

measurements), these can also be incorporated in the analysis to help determine die equilibrium

more accurately, and in more detail. FP has already been successfully applied to poUrimctric

data at the TEXTOR tokamak [Mi11-91aJ, and this is anticipated for RTP as well (in

combination with magnetic data). Also, FP is fast enough to make it a likely candidate for real-

time plasma control and frffMnfk

4.2.5.4 Conclusions

The method of Function Panmetrization provides a means to cany out fast data analysis of

measurements done on physical systems modelled with large and complex computer codes. The

analysis can be carried out using only minimal computing time. This is achieved by

concentrating the main cowpMKinnal effort before the beginning of the physical experiment

The method may be of we in other contexts at weU: k may relieve any repetitive running

of large computer programs, or at least give a first approximation of the solutions that such

programs attempt to find, thus reducing the searching effort. Its use is alto indicated with

expert systems.
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4.2.6 Appendix

4.2.6.1 Database generation: Method of parameter selection

Database generation is carried out by selecting the N^ independent parameters pj, j=l,...,Nid

randomly from a range R-: p"11" < p- < pj"1*, computing the remaining plasma parameters and

the measurements, and repeating this N

times. The random selection is made using a

truncated normal (i.e. Gaussian) probability

distribution function /;(Pj) with its

maximum at

pT" (where pj"* <. J™ <> pf") and width

o^ (Fig. 4.10). The choice of a Gaussian-

type probability distribution function is not

essential to the method. The upper and lower

boundaries only serve to prevent extremely

unlikely states of the plasma to be included

in the database. The value of pj*"* is

inspired by expectations about the most

likely experimental situation as indicated

above, and likewise the choice of a- is

inspired by the expected spread. This procedure will cause the regression (see below) to be

most accurate near the most bkely experimeMal atuaoon.

Fig. 4.10 Truncated Gaussian probability

distribution function.
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4.2.6.2 Database generation (RTP)

Table 4.3:

Parameter

!P

Bo

Z*eo

5
*r
er
»n
«n

Plasma state parameter distribution

Lower bound

10000.
1.0

0.65

-0.05
0.09

0.04

-1.2
0.2

-1.2

0.1

Central value

100000.

2.03

0.72

0.

0.173

0.0555

-1.0

0.7

-1.0

0.3

settings for database generation

Upper bound

150000.

2.3

0.80

0.05

0.178

0.1

-0.8

1.2

-0.8

0.8

Spread, a

30000.

0.2

0.04

0.02

0.04

0.01

0.1

0.2

0.1

0.15
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4.2.6.3 Table of notation

p state of a physical system

p* physical parameter vector (pt,—.p

q measurement vector (qj,—

5fc computer model q = 5t(p*)

I s inverse mapping p* = ${q) + ~e

N number of simulations = size of database ( a = I,... JO

N p number of physical parameters (j = 1,... JiJ

Nq number of measurements (i = l,...J4q)

N^j number of pbyskad parauieiers sufficient tc> identify a physical stale

<x>j average of Xj

Oj(x) standard deviation of Xj

x normalized vector x* (Le. having zero mean and unit standard deviation)

x* 'transformed* vector x* (having linearly indrprrtdrnt mmpoocrHi in the dat>bay)

N s number Of significant variables

^n(x) basis function of a* order in x

C|j resression coefficient

N , number at 'tnmdateaoS vector componenu used in constructing basis functions

of n* order
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4.3 Application of Function Parametrization to the Analysis of Polarimetry
and Interferometry data at TEXTOR

B.Ph. VAN MILLJGEN, H. SOLTWISCH1, N J . LOPES OLRDQZO

POM MMtifewt voor Plasaa Fysica "Rijahuizea"
POBOK 1207.3430 BE Niemwtgcm, Tie Netheriwfc

IV rlBMUMyME, I*OnCaM(SSCMnHi JUKI,
D-W 5170 Mb*. Goaay

Function Parametnzatioa provides a way to do complex data analysis in a fast and reliable

manner that allows iattr-ahot analysis. H e mediod has been naed to analyse pobrimeuy and

imeiferomttry dau at TEXTOR with the pwpoae of obtaining spatial distributions of the

electron density and toroidal f iaam CNmat. A stawtanl TEXTOR dtacharte is investifatecl,

allowing comparison of the irwihf wkk nasnks obtained by conventional meAods of data

analysis. Agreement between * e two is gcnenlly good. For the central safety factor we

driciininc a value of q ^ O J i O . l iaarfwdanft wia pfevious ctlmlations. The new method

allows easy iacotporation of i
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4.3.2 Introduction

In a tokamak, the total toroidal plasma current can be programmed, but it is not possible to

control the distribution of the current over the plasma column. In fact, it is not even possible as

yet to make direct, accurate measurements of the current density profile. The experimental data

available are rather indirect, such as the magnetic fields outside the plasma (which give very

little information on the current density in the plasma centre, especially for near-circular plasma

cross-sections) or the Faraday rotation a polarised laser beam experiences when passing

through the plasma. To construct the current distribution from those measurements, it is in

general necessary to parametrize the plasma state (i.e. the profiles of density and current, or the

MHD equilibrium) and to simulate the measurements corresponding to that plasma state. Thus

the task is to find a set of parameters for which the simulated measurements match the

experimental values within the measuring accuracy.

This type of problem is very well suited to be tackled with a technique known as

Function Parametrization (FP). In general terms, this method provides a direct mapping of the

observables onto the stale parameters of a physical system. For the problem at hand, mis means

that the current density profile is parametrized, and the profile parameters are expressed in terms

of the magnetic fields or Faraday rotation measurements. To achieve this, a database is

generated containing a large number of MHD equilibria. The equilibria are chosen in such a

way that all normal plasma condJrtons are covered by the variation in the database. Along with

each equilibrium, a set of y-^ftwf measurements is computed and stored. The database is

subjected to a statistical analysis procedure mat results in a direct mapping of the measurements

onto the physical parameters. This mapping is a set of simple functions which express the

plasma parameters in terms of the obfervables. These functions can be evaluated for

experimental data using a minimum of CPU time. Thus, the advantages of FP are twofold:

once set up, the amJysit is very fast,

the analysis is imenully consistent, ix. one always finds results within the class of

parametrized MHD equilibria.

Jn this paper we detente the application of FP to the analysis of poUrimeicr data at

TEXTOR. As has been shows previously, the combiaatkmofpolarmietrk:aadiniei1erometric

measurements can be used to reconstruct the current deadly profile. For this purpose an

interpretation method has bees developed that assumes a flux surface geometry of shifted

circle and rtCTativdy adjust* te cunt* dewfr

the experimental values ISok-Mb). We shall refer to das method u Method I. Other iterative
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techniques for the interpretation of polarimetry and interferometry data are described in [ORou-

88; Hoff-88]. In this paper we compare the results obtained with Method I and Function

Parametrization. Particular attention is paid to the value of the safety-factor in the centre of the

discharge.

4.3.3 Interferometry and polarimetry at TEXTOR

At TEXTOR, the plasma is intersected by nine linearly polarized Far Infrared laser beams,

vertically aligned in a poloidal cross-section (Fig. 4.11; details on the experimental setup may

be found in Refs. [Solt-86a, Solt-86b]).

Fig. 4.11 Schematic layout of the

TEXTOR polarimetry I interferometry setup.

To food approximation, the laser

light experiences a phase shift A+ and a

polarization rotation angle a upon passage

through the plasma given by [Soh-86b]:

Imafemmeuy:

A* = c ,

Polanmctry^

Z
JnedZ

-Z

a «c2X
2 Jac B^dZ
-Z

( c , « 2.818-10~15in)

(C2« 2.615 10"" T 1 )

(4.27a)

(4.27b)

Here the usual cylindrical caaOmmc tymm (RZ4)tt adopted;^ is tteefecmm density and

B ^ ii die compote* at to poioidal mafnetic field pmM^totktpaimgbema,tUqiitmtbbc*
are expressed ia S.I. units with A# and a in radians. H e probing beam wavdengdi is

X - 337 • 10* n . The vaUdky flf the i

been discussed in Ref. [Soat-IO|.
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Interferometry signals

CO

|•n 4 0 -

0

Fig. 4.12a The interferometry signals for TEXTOR discharge U14214. with arbitrary offset.

The interferometry aad poiarimetry error levels quoted are: c ^ « 0.126 n d and c ^ j *

0.0026 rad (these absohite error levels correspond to approximately 0.25% and 1.5% relative

error levels, respectively, for typical npal values) [Soh-86a]. Typical dau are shown in Fif.

4.12.
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Polarimetry signals

-0.2

Fig. 4.12b The polarimetry signals for TEXTOR discharge #14214, with arbitrary offset.

4.3.4 Data analysis

4.3.4.1 Conventional method

The analysis procedure presently in use at TEXTOR (Method I) has been described in detail in

Refs. [Solt-86a, Sdt-86bJ. The main steps may be summarized as follow*: (i) expand the

experimental data AKRj) and a(Rj) (with i * 1.....9 representing die installed probing beams)

by suitable splinc-inierpolatioos into full phase shift and Faraday rotation profiles alonf the

nujor radius; (U) dividend plasma cross-sectk^ 100)
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corresponding to a set of horizontally shifted circular flux surfaces in rough agreement with
numerical equilibrium calculations; (iii) assume both the electron density ne and the flux change
dY/dp to be constant in a given ring zone and approximate the integrals in equations (4.27a)
and (4.27b) by finite sums with the number of terms equal to the number of ring zones
intersected by a virtual probing chord; (iv) invert the resulting systems of linear equations to
obtain a first approximation for ne(p) and d*F/dp; (v) impose certain constraints (such as the
flux change on the plasma surface being in accordance with the total current) and calculate
'theoretical' phase shift and Faraday rotation data for the probing beam positions R;; (vi) vary
the flux surface geometry and iterate the procedure until the 'theoretical' signals match all
experimental ones as closely as possible.

Owing to the fact that both A<J> and c; vanish at chords near the plasma boundary, no
accurate information can be obtained from the edge region.

Besides being a time-consuming process, this method of data analysis derives the shift
of the flux surfaces only from measured asymmetries in the A$(R)- and oc(R)- profiles and not
from detailed equilibrium calculations. It should be noted, however, that occasional cross-
checks with an extensive MHD equilibrium code have confirmed both the underlying
assumption of circular flux surfaces as well as the resulting eccentricity.

4.3.4.2 Function Parametrization
The method of Function Parametrization takes quite a different approach. The state p of the

plasma is modelled in terms of a finite set of parameters {pj, j=l,...,Np}, where Np is the

number of physical parameters involved in the model. Below we shall investigate the actual

parametrization with which standard TEXTOR discharges are represented

Once the parametrization is fixed, the parameters Pj are varied randomly within certain

ranges. These parameter ranges are chosen large enough to cover most plasma states occurring

in real experiments. For every parameter set an MHD equilibrium is computed along with

simulated measurements (qif i«l Nq). For every simulated equilibrium the {qif Pjj are

stored in a database. At this point we remark that {pj} includes both the minimal set of plasma

state parameters that are sufficient to identify an equilibrium, as well as a number of derived

parameters that are of physical interest but are dependent on the stale parameters.

The database is subjected to a statistical analysis procedure that results in a direct

mapping of the measurements onto the physical parameters, p* * F*(q*) + <?, where icfl is small.

In the following we very briefly summarize the method. A more detailed account is given in

[Solt-80].
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The measurement vector q is normalized: qj = (qj - <qi>)/ai, where <qj> is the average

value of q{ in the database and a ; its spread. Then , the dispersion matrix D is computed

according to

D:: =

where N is the number of simulations made. The eigenvalues and eigenvectors of D are

computed: D~Cj = Xjcfj, where Xj £ k2 ^ ... ^ A.Nq > 0 and lefy = 1. We define 'transformed'

variables

The variables q, are linear combinations of the measurements with standard deviation "\ Xj.

They are uncorrelated within the database. The q; are used in a regression: Pj = fj(qi,q*2>• •• .qViq)

+ Cj. We take fj to be a Hermite polynomial of order 2. In order to reduce the dimensionality of

the fitting problem we discard those qt that have Xj < (3e)2, where e is die relative measurement

error. The latter procedure is known as principal component analysis. The result of the

regression is a mapping of measurements onto physical parameters,

MHD equilibrium model

MHD equilibrium is described by the Grad-Shafranov (GS) equation:

(4.28)

where 4* is the poloidal flux and the prime denotes d/dV; j^(R,Z) is the toroidal current

distribution (j^=0 outtide the plasma boundary dQ). pf?) is the pressure profile (not to be

confused with the physical parameter vector p) and VQ¥) the poloidal current profile: ¥Q¥) *

RB*.

The plasma equilibrium is computed by means of a fixed boundary ideal MHD

equilibrium code: HBT [Goed-84]. The code has been extended to perform polarimetry
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simulations. In this computer model, a state of the plasma p is identified by the following set of

quantities:

1) Main plasma parameters:

Ip (plasma current) and Bo (toroidal magnetic field on torus axis)

2) Flux surface geometry parameters specifying the location of the magnetic axis and

parameters specifying the shape of the plasma boundary

3) Profile parameters specifying the equilibrium profiles p'(*F), ¥FQ¥)

4) Electron density parameters specifying the electron density ne

The first objective of this investigation is a comparison of the results of FP with those of

Method I. Therefore we choose the parametrization of the various quantities to match the

assumptions underlying Method I as closely as possible. Thus, with regard to 2) we use

circular flux surfaces that exhibit horizontal but no vertical displacement. With regard to 4) we

set ne = ne0F). Note that ne does not appear in the Grad-Shafranov equation, so that, strictly

speaking, it can be any function of (R,Z). However, in ohmically heated discharges the

assumption that ne is a flux quantity is closely satisfied and it conforms with Method I.

With regard to the profiles (3,4) we make the following choice which allows for a wide

variety of (non-hollow) profiles:

(a r + b r = - l ) (4.29a)

(an + b n = - l ) (4.29b)

ne0j>) =neO (l + anY + bnV2)6" ( ^ + ^ = -1) (4.29c)

Here \|/ is a normalized flux coordinate: y = 0 on axis and y = 1 at the plasma boundary. The

unit profiles F and II that appear in the HBT code are related to the more familiar pressure

derivative (p1) and poloidal current (FF) profiles through:
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ABeBj

(4.30a)
Tnii

(4.30b)

where A and B are eigenvalues of the GS equation and a is a dimensionless parameter

measuring the total poloidal flux: a = ^^o/^i (here Oj is the unnormalized flux at the

plasma boundary). A,B and a are determined by the MHD equilibrium code HBT [Goed-84].

The electron density profile (4.29c) is such that it has a continuous first derivative at the

magnetic axis.

Summarizing, the plasma state p is modelled with 9 parameters using these

parametrizations of the profiles:

2 parameters for global plasma definition: Ip, Bo

3 parameters for the plasma geometry definition:

Rgeo (the geometrical centre of the plasma boundary),

a ^ (the minor radius of the plasma boundary) and

5 = (Rmag-RgeoVamin ( m e dimensionless Shafranov shift of the magnetic axis)

4 parameters for equilibrium profile definition: ar, e r , an, e n

In addition, the electron density profile is modelled with 3 parameters: n^, a,, and en.

Data base generation

To get an indication whether the parametrizau'on chosen in the previous section is sufficient to

describe real data, interferometry and polarimetry signals of a prototypical TEXTOR shot (#

14214) were compared to data simulated by the equilibrium program HBT. The signals were

taken at time t = 1.33 s, when the plasma was in steady-state. The plasma state parameters were

adjusted until satisfactory agreement with the measurements was obtained. We found that the

F - and n-profiles need the freedom of a r, an, e r and e n in order to reproduce the data within

the measuring accuracy.

Having found a satisfactory reproduction of the measurements for a prototypical

discharge, a database of equilibria was created by varying the plasma state parameters around

this typical state. Table 4.4 lists the central values and the bounds chosen for each parameter.
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Table 4.4: Plasma state parameter range settings for database generation

Parameter
Ip

B0

Rgeo

amin

5
ar

e r

an

en

ne0/(10w)

en

Lower bound
100000.

1.7

1.67

0.35

0.05
-1.4

1.5
-1.4

1.5

0.5

-0.9

0.5

Central value
300000.

2.02

1.72

0.48

0.08

-1.0

2.2

-1.0

2.2

4.0

-0.1

1.4

Upper bound
500000.

2.3

1.80
0.53

0.15

-0.7

2.5

-0.7

2.5

8.0

0.

2.5

Spread, a
100000.

0.1
0.04

0.03

0.02

0.2

0.2

0.2

0.2

3.0

0.2

0.5

The MHD equilibrium code HBT was run for 600 randomly chosen plasma state

parameter values which were selected from Gaussian probability distributions centred around

the 'central value' with a spread o. The probability distribution functions were truncated at the

'lower bound' and 'upper bound' values to prevent extremely unlikely equilibria from being

generated.

Actually, the interferometry and polarimetry measurement simulations are not directly

computed by HBT because the electron density profile does not appear in the MHD equilibrium

equation. Rather, the database contains enough information to be able to recoitstruct the flux

and magnetic fields along the polarimetry chords. The statistical analysis program (FP) then

randomly selects electron density profile parameters and computes the polarimetry and

interferometry data. The measurements simulated are: Ip, Bo , 9 polarimetry channels and 9

interferometry channels. These observable quantities are mapped onto several interesting

plasma parameters by means of the statistical analysis procedure outlined before.
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Error and reliability analysis

The reliability and sensitivity to measurement noise of the mapping mentioned above was

studied. The systematical error introduced by the mapping can be estimated by computing the

plasma parameters from the simulated data in the database using the mapping (? ) and

comparing them to the stored values p:. The systematic reconstruction error is defined as

where a runs over all N simulations. esfs is the average systematical error over the data base of
fh

the j parameter.

The statistical error in the computation of Pj can be estimated for each equilibrium

separately by

j j ^ j p j (4.32)

where P runs from 1 to Nstat (chosen arbitrarily but not too small) and ep is a vector of random

variables. The standard deviation of the i component of e p, a ( e ^ ) , is equal to the

measurement error in the i measurement (see section 4.3.3). e8?' is a function of q and

therefore variable over the data base. In table 4.5, e8™ is computed at the centre of the data base

parameter space.

The combined effect of the statistical and systematic error, the total reconstruction error,

containing the effects of both the systematical and the statistical error can be estimated from

(erp2 = î Y X (Fj(qVe «) - pja)
2> (4.33)

)2where a runs from 1 to N. Approximately, (£ r p 2 ~ (esjs)2 + (e""1)2.

If the spread of a parameter within the database is small, the error Ej may also be small

without predicting variations in the parameter correctly. Therefore the quantity Cj/o is

considered a better indicator for the quality of parameter reconstruction than £j itself.
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Table 4.5: Perturbation analysis; reliability test of inverse mapping

Central value

Spread, o~:
Psys

Ip(A)
309000.
76400.

Rmag'
1.73

0.031
0.00718
0.00221
0.00784

22.8

7.12

24.9

0.472

0.0275

0.0160

0.0205

0.0271

58.0

74.5

98.4

5
0.0909

0.0142

0.00971

0.0133

0.0171

68.4

93.7

120.

ne0/(1019)
4.01
1.92
0.124
0.218
0.263
6.28

11.4

13.4

qo
0.837

0.25

0.0766

0.0439

0.0960

29.6

17.6

37.0

In table 4.5, the result of this error analysis is presented for some important plasma parameters.

The plasma current is measured directly. It is observed that the approximate relationship (e^)

~ (£sfs) + (eSj*') holds for the parameters not measured directly. Quantities related to the outer

plasma regions such as a ^ are indeterminate (ET/OJ ~ 100%), as can be expected from this

type of measurement (see section 4.3.4.1). Use of magnetic diagnostics should improve the

latter. Likewise, due to the fact that 8 = (Rmag - RgeoV^in' 8 is less accurate than a ^ .

However, the location of the magnetic axis, R ^ , can be determined with an accuracy of 0.8

cm; n^ with 2.6 • 1018 m"3; and q0 with 0.1.

The error analysis presented above is based on the measurement error levels mentioned

in section 4.3.3. These error levels are maximum estimates. Actual measurement error levels

can be slightly smaller and can be estimated from the zero level signals of the interferometry and

polarimetry detectors before the start of the discharge.

The results obtained by FP arc only valid for plasma conditions within, or close to, the

subspace of the total plasma state space covered by the data base. If a plasma state lies within

this subspace, we know that the quality of the reconstruction can be estimated by tables such as

table 4.5. A measure for the reliability of the results is therefore:

Q=w
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where Nq is the number of measurements involved, q, is the value of the transformed

measurement i (see section 4.3.4.2), X; is the i* eigenvalue of the measurement dispersion

matrix (i.e. the variance of the i* transformed measurement in the database), and Et is the error

that the transformed measurement q{ suffers due to measurement errors. Thus, Q is an indicator

for 'closeness' of a measurement to the 'centre' of the subspace (of the total parameter space)

that is covered by the simulations. If Q < 1, the measurement is well represented within the

database and the accuracy estimates made above apply. If Q > 4, the results obtained by FP are

extrapolations beyond the boundaries of the simulated subspace and no indication of the

accuracy can be given.

4.3.5 Application to TEXTOR data and comparison to Method I

In order to test the validity of the Function Parametrization method, we have analyzed the

temporal evolution of TEXTOR shot # 14214. From the large array of plasma parameters we

have selected the quantities Rgeo, R^g, n^ and q0 as being indicative of the possibilities of this

reconstruction technique.

400
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a
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m
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Fig. 4.13a The plasma current vs. time for

TEXTOR discharge # 14214.

Fig. 4.13b The FP reconstruction quality

parameter Q for TEXTOR discharge #

14214.
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Figure 4.13a shows the time trace of the plasma current. There is a non-destructive

disruption at t = 0.79 s, which changes the discharge characteristics from a non-sawtoothing

plasma of relatively high metal content to a cleaner sawtoothing discharge. Figure 4.13b shows

the FP reconstruction quality parameter Q. The reconstruction is valid during the entire shot,

except at the beginning (t <. 0.03 s) and at the end (t £ 3 s). This is mainly due to the current

ramp that is likely to cause profile deformations not covered by the chosen parametrization (see

section 4.3.4.2).

1.74

1.72-

1.70

1.68

1.66

Typical FP
reconstruction

1 2
Time (s)

1.79

1.77
E

1.75

1.73

\

i

Typical FP
reconstruction
error

0 1 2 3 4
Time (s)

Fig. 4.14a Time trace ofRgeo, the location Fig. 4.14b Time trace ofRmag, the location

of the outer flux surface. The FP error bar of the magnetic axis. The FP error bar

shown is €ec. shown is €ec.

Figures 4.14a and b show the time traces of Rgeo and R^g as computed using FP. The

plasma performs a fast inward movement during the disruption. This behaviour is confirmed by

the plasma position signal A that is computed from the Faraday rotation signals using the

method described in [Solt-83] (figure 4.14c). A is the zero crossing of the a(R) profile which

is closely related to R,,^ except for a small negative offset due to toroidal effects. An oscillation

of amplitude 1 cm on the Rgeo signal starting at the disruption can be observed. This oscillation

is much less pronounced on the R,,^ signal.
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Fig. 4.14c The plasma position signal A that

is computed using the method described in

[Solt-83].

Fig. 4.15 The time trace of the central

electron density, ne0. The dots indicate

values ofna as obtained with Method I (cf.

Figs. 4Sa-c).

Figure 4.15 shows the time trace of ne0 from FP. A steep drop in central electron

density at the disruption is followed by a recovery shortly after. The recovery is not complete.

The negative density spike is reflected on the Shafranov shift, showing a sharp drop followed

by a rapid increase to its original value. The dots indicate n^ values obtained by Mediod I (cf.

Figs. 4.17a-c).
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1.8

1.6'
Typical FP
reconstruction
error

Figure 4.16 shows the rime trace of

q0. After the start of the discharge, the

signal steeply decreases to a value of around

0.8, crossing the q0 = 1 line at t = 0.32 s

(i.e. shortly after the plasma current has

reached its plateau value). Prior to the

disruption the value increases slightly but

stays below 1, although there is no sawtooth

activity. Following the disruption, q0

remains close to 0.8 during the sawtoothing

phase of the discharge.

The reconstructed values of ne0 and

q0 agree well with the results derived by

conventional analysis. For comparison,

Figs. 4.17a-c show electron density

distributions as obtained by both methods

and Figs. 4.17d-f safety factor profiles as

obtained by both methods at three different

times of the same discharge.

4.3.6 Discussion

4.3.6.1 Results for discharge # 14214

The value of q0 obtained with FP (q0 = 0.8 ± 0.1) is the result of a self-consistent method

employing ideal MHD equilibria as the basis for the analysis. Given the plasma model we have

chosen, we are able to devise a X2-test, and reject the hypothesis qg £ 1 with 95% certainty. In

other words, q0 > 1 would require a more complex model than the one adopted here. On die

other hand, the data presently available are well reproduced by the present model, and die need

for more complexity is not apparent

Time traces for several important plasma parameters for die typical discharge # 14214

have been obtained using FP analysis. These traces satisfactorily reproduce die traces obtained

by method I. In particular, die plasma position signal A compares well with R,,^ (FP). The

slow oscillations (having a period « 0.2S s) present in the Rgeo signal but absent in die A and

1 2 3
Time(s)

Fig. 4.16 The time trace of q0. The FP
error bar shown is €ec.
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Fig. 4.17a Electron density profiles obtained by Method I
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Fig. 4.17c Electron density profiles obtained by Method I Fig. 4.17f Safety factor

andFP att = 1.0 s. Note that the electron density profiles profiles obtained by Method I

from FP have a relatively simple shape since they are andFP at t= 1.0 s.

parametrized with three parameters only, whereas the

profiles from Method I are obtained from spline fits to the

data.

the Rmig signal are due to the fact that R$eo refers to the plasma boundary, whereas the A and

Rmag signals refer to the magnetic axis. The oscillation on the Rgeo signal following die

disruption is also seen on the a,^ signal, albeit with reversed sign.

4.3.6.2 Future extensions of the method

The analysis presented in this paper employs a very simple flux surface geometry of shifted

circles. The method can easily be modified to handle more complex geometries (e.g. allowing

for vertical plasma displacement or plasma elongation). In order to do so, however, more

geometrical measurement data are required (e.g. Mirnov coil signals could help determine die

plasma boundary location and shape).

Another assumption made in this analysis is that the election density profile is a flux

quantity, ne = ne(y), because it provides an important link between measurement data and flux

surface geometry. Therefore this assumption can only be removed if other measurements are
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incorporated that give information on the flux surface gtcmci/y, such as Soft X-ray

tomography.

A minor improvement that will be implemented is the replacement of the approximate

equations (4.27a and b) used in computing the simulated interferometry and polarimetry

detector signals by a ray-tracing algorithm and a model for the optics and electronics in the

detection system. This will not affect any of the results presented here significantly.

The parametrizations of the n and F profiles used now do not allow for e.g. hollow

profiles. In order to admit more complex profiles in the formalism, it would be necessary to

increase the spatial resolution of the combined intcrferometric and polarimeiric diagnostics.

The prospects for routine use of the data analysis method presented here at TEXTOR are

good. The addition of magnetic signals to the analysis is anticipated.
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5. The safety factor and MHD mode activity

5.1 Introduction
The existence of MHD modes associated with rational surfaces, as mentioned in chapter 2,
affects plasma stability and transport deeply. The observation of such modes is often difficult
for various reasons: tftere may be several modes present simultaneously, and some or all may
have small amplitudes- Most diagnostics provide spatially averaged data (e.g. line integrals of
the electron density or soft X-ray emission; electron temperatures averaged over certain
measuring volumes) or otherwise composite data (e.g. magnetic fluctuations observed by pick-
up coils due to modes at different rational surfaces), which makes the interpretation of the data
in terms of local mode activity extremely difficult in most cases.

In section 5.2 some of the most basic methods used in the analysis of MHD mode
activity are described. In section 5.3 these methods are applied to observations of mode activity
during the pre-disruption phase of the plasma at RTP. In section 5.4 the observation of
pressure inside island structures at JET is discussed. Finally, section 5.5 reports on MHD
activity during Pellet Enhanced Performance (PEP) discharges at JET. This section is a
reproduction of the paper Shear reversal and MHD activity during Pellet Enhanced Performance
shots in JET [Hugo-91b] in which many diagnostics were used to obtain a consistent picture of
the local mode activity. The observed modes are linked with rational surfaces, and thus the
observations also led to a reassessment of the magnetic equilibrium. The JET shots that were
investigated were found to have negative shear in the central region, i.e. s = ~ S < 0, in
agreement with earlier theoretical predictions [Huys-91].

5.2 Methods used in the analysis of MHD activity
MHD modes or magnetic islands are helical structures associated with rational q-surfaces (see
chapter 2). A primary point of interest in the analysis of MHD modes is to establish the
relationship between the electron temperature fluctuation 5Te, the electron density fluctuation
Sne and the current fluctuation 51 inside the island (at the O-point) with respect to the situation
outside the island (at the X-point), as this provides insight into the nature of the islands.

Depending on the sign of the shear, the incremental current 51 flowing in the island O-
point parallel to the magnetic field on the flux surface is positive or negative [Rebu-90]. If, for
simplicity, one considers an equilibrium with circular concentric nested flux surfaces in
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cylindrical approximation, the incremental current can be expressed as:

51 = I 5 l m t n sin(m9 - n* - Xm.n - ©m.nO 5(p - pm,n) (5.1)
m,n

where 5lm n is the incremental current associated with the (m,n) island, xm,n *s m e phase of

island chains on separate flux surfaces and can be taken equal to zero if just one mode is

described, and conun is the rotation velocity of the island, which need not be constant in time. If

the shear is positive at the rational surface q = m/n, 8 ^ is opposite to the main current Ip in

the island O-point; otherwise it is in the same direction. Due to the helical symmetry of the

structure, it is impossible to distinguish between poloidal and toroidal rotation for modes with

m,n > 0 using the magnetic pick-up coils only. The Kronecker 5-function 5(p — pm>n) is an

approximation of the radial current localization on the flux surface; in reality the island width is

finite [Bate-80].

The effect of such rotating helical structures on poloidal field pick-up coils is

Be(9,(t>,t) = XAm,n0>m,n COS(m9 - n<|> - Xm,n " GVnO (5.2)
m,n

where the amplitude A m n is related to the incremental current 5 l m n , in cylindrical
approximation, by

4:cpB ^ PB J

where pg is die radial position of the poloidal field pick-up coil. The spatial dependence of the

observed amplitude generally prevents the observation of high m modes with the magnetic

diagnostic. In particular, the pick-up coils are often situated at such distances from the plasma

that the term between brackets in Eq. (5.3) is of the order of j or smaller for most modes, and

thus the observed amplitude of the modes decreases approximately exponentially with m.

In Eq. (5.2) the term Ani(I1(om(n appears because of the time derivative. It is possible,

however, to determine the amplitude of the oscillating quantity B6 = Be - <Be> (here <>

denotes averaging in time over a few periods of oscillation), which is determined by A ^ only.

In particular, if a single mode dominates the magnetic field oscillation or if simultaneous modes

can be distinguished by means of their frequencies, Eq. (5.3) allows evaluation of the

incremental current 51 if the radial position p ^ of the mode is known.

The expression for the radial island width, w, is given in terms of the radial field
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perturbation at the rational surface [Wess-87]:

where Bp is the amplitude of the radial field perturbation due to the island. Using the model for
the current distribution given by Eq. (5.1) this can be rewritten in terms of the current flowing
in the island:

(5.4b)

in which all quantities are evaluated at the rational surface.

It is possible to separate the poloidal and toroidal mode number contributions to the

observed oscillations by means of a Fourier analysis with respect to the angles 8 or $ of the

pick-up coils. Define

•• - J Be(8,<M) cos(m8) d8,
710

K = ~J Be<e,fct) sin(me) d6 (5.5)

In practice the integrals (5.5) are replaced by sums over the pick-up coils. These Fourier

coefficients can be combined to give

-\/ (

V

(Fm>2 + ( O 2 = 2 Am(n<om>n = Sm (5.6)

i.e. the combined amplitude of all modes of poloidal mode number m. A similar procedure can

be applied to a toroidal set of pick-up coils in order to obtain F£ and F*n, fitom which the toroidal

mode amplitude Sn can be computed.

As mentioned above, these derivations are made for a simplified circular, concentric flux

surface geometry in cylindrical approximation. A more detailed analysis would include the

effects of an eccentric plasma position, the Shafranov shift, the non-circularity of the plasma

boundary and the toroidal effect [Harl-89]. The simple procedure outlined above already gives

quite satisfactory results for modes of low poloidal mode number m at RIP, but is inadequate

for poloidal mode determination in the D-shaped JET plasmas. In this case more advanced
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techniques are required, such as Singular Value Decomposition [Smeu-91]. At JET, hardware

combinations of poloidal pick-up coils in a toroidal set provide signals Sn, for which this type

of analysis is valid despite the D-shape. At RTP no toroidal set of pick-up coils is available.

Another important analysis tool is frequency analysis. Standard Fourier methods yield

frequency spectra of a single pick-up coil. A peak in the spectrum should correspond to a

certain mode number. In particular, with the assumption that the plasma rotation is dominantly

toroidal, in agreement with experimental observation [Brau-83], the peaks at different

frequencies,/„, can only be due to modes with different toroidal mode number n. The toroidal

rotation velocity profile as a function of minor radius is roughly Gaussian with the peak in the

centre. The frequency of an observed mode/n is related to the average toroidal plasma rotation

frequency: / r o t = </(j)>/(2jcRgeo). Even though the plasma rotation is inhomogeneous, it is

observed very often that modes at different rational surfaces couple, implying that the magnetic

mode-structures do not follow the local plasma rotation exactly [Brau-83]; for coupled modes

(Dra>n = co or/n = n/j. Thus the frequency spectrum provides a diagnostic for the toroidal mode

numbers involved.

Often it is observed that plasma rotation is not constant in time: the plasma is either

spinning up or down (as in the case of modelocking). Then a 'binning' procedure in which the

signal is subdivided into short time sections, for each of which a spectrum is made, provides

insight into the time development of the dominant frequencies.

The modes at different radial positions can only be distinguished by means of

diagnostics that have sufficiently high spatial resolution such that local measurements of

quantities that are affected by the MHD modes can be made, e.g. ECE temperature

measurements. In addition, line integral measurements from e.g. interferometers or soft X-ray

cameras can provide local information. These measurements, however, are more difficult to

interpret due to the deconvolution (Abel-inversion) that is needed.

5.3 MHD activity and density limit disruptions at RTP
MHD behaviour of plasmas prior to density limit disruptions has previously been reported in

[Wess-89] for JET. In this section observations with a number of fast diagnostics of similar

disruptions in RTP are presented.

Fig. S.I demonstrates the behaviour of a typical density limit disruption (shot

R19900724.006). Fig. 5.1a shows time traces of the plasma current and the horizontal position

of the plasma. Fig. 5. lb shows the magnetic activity for m = 1,2 and 3. After an initial MHD
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Fig. 5.1a Plasma current and horizontal plasma position for discharge Rl9900724.006. At

t = 28ms,a disruption occurs.

quiescent phase during the current rise, MHD activity (m = 2) appears at 15 ms. A sequence of

minor m = 2 disruptions sets in at 20 ms, leading to a major disruption at 28 ms. Each minor

disruption creates an inward movement of the plasma, after which the plasma recovers and

moves outward again. The fast inward movement can be seen as a spike on the m = 1 signal.

The explanation of this type of behaviour is thought to be as follows [Wess-89]. Due to

increased radiation of impurity ions at high density, the edge region of the plasma cools down.

This cooling reduces the current density in the edge, thus creating a current profile with steep

gradients inside and near the q = 2 surface, which strongly destabilizes the (m,n) = (2,1) mode.

The violent m = 2 mode redistributes the plasma energy around the q * 2 surface: the

temperature inside the surface is lowered while the temperature outside the surface is increased.

As a consequence, the current density profile is modified and the gradients are reduced, such
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Fig. 5.1b Magnetic activity Smfor m- 1,2 and 3. A sequence of minor disruptions occurs

between 20 ms and 28 ms.

that the m = 2 mode is stabilized. The cooling in the edge region continues, however, and a

following minor disruption develops. The sequence of minor disruptions is followed by a

major disruption when an m = 1 mode is destabilized.

Due to the sudden reduction of the kinetic energy content of the plasma and the

flattening of the current profile during the minor disruptions, the Shafranov parameter A = p̂ , +

£ /j drops. The parameter p̂ , is the ratio of the averaged kinetic pressure of the plasma and the

magnetic field pressure exerted by the poloidal magnetic field at the edge (see Appendix). The

normalized internal induction /j is a measure for the peaking of the current density profile. The

vertical magnetic field required to keep the plasma at its position R = R f e o is
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Fig. 52a Plasma current and horizontal plasma position for discharge RI9900724.005. At

t = 83 ms, a disruption occurs.

approximately [Frei-87]:

Bv = (5.7a)

from which it can be seen that, since the vertical field Bv and the plasma current Ip are

approximately constant on the fast timescale of the disruption,

AA
(5.7b)

"min

The change in the Shafranov parameter, AA, is negative while the denominator on the right-

hand side is positive. Thus the inward movement of the plasma ARgeo can be understood.
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Fig. 5.2b Magnetic activity Sm for m = 1,2 and 3. A strong m = 2 mode sets in at

t = 40ms.

Eq. (5.7b) allows an estimate of AA to be made. For the minor disruption at t = 20 ms AR£eo =

-4.5 mm and Rgeo = 71.3 cm (Fig. 5.1a). Taking a,^ = 17.5 cm and A » 1 (as confirmed by

Function Parametrization, see chapter 4) AA = -0.013, or 1.3% of A.

Fig. 5.2 shows an example of a density limit disruption without the prior sequence of

minor disruptions (shot R19900724.O05). Fig. 5.2a shows the plasma current and the

horizontal plasma position. Fig. 5.2b shows the magnetic activity for m = 1,2 and 3. Strong

MHD activity (m = 2) sets in at 40 ms and causes an inward movement of the plasma, from

which it can be deduced that it is accompanied by a reduction of A. Fig. 5.2c shows a

frequency - vs - time plot of a vertical interferometer channel at R = 0.72 m. A frequency

analysis of a pick-up coil yields an identical picture. It can be seen that the m = 2 mode, starting

at 40 ms at 10 kHz, slows down to 6 kHz at 80 ms, at which time the major disruption occurs.
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Fig. 5.2c Frequency -vs- time plot of the signal of the 2 mm interferometer, showing the

slowing down of'them = 2 mode. For this analysis the signal was divided into 35 time sections

of 2 5 ms, and for each section a spectrum was made.

The current in the m = 2 island is computed using Eq. (5.3). The relevant quantities are

evaluated at t = 50 ms (m = 2 mode activity signal S2 = 30 Ts"1; plasma rotation frequency/=

10 kHz; pick-up coils at pB = 0.213 m; plasma minor radius a,,^ = 0.175 m; major radius Rgco

= 0.72 m; toroidal magnetic field B̂ , = 1.9 T; plasma current Ip = 100 kA). Assuming that the

only mode contributing to the S2 signal is the (m,n) = (2,1) mode, the observed mode

amplitude A2j = S2/(2TI/) = 0.48 mT. The safety factor at the plasma boundary is qcyi = 4.0

(see Appendix). Assaming that nearly all current flows within the q = 2 surface (in agreement

with the destabilization of the q = 2 mode, see the argument above) the q-profile is parabolic

outside this surface: q(p) = qCyi(p/amin)2 (P ^ P2.1). s o the q = 2 surface is at p2>i = 0.12 m.

Thus an estimate of the current flowing in the island is: 8l2)1 = 46.4-p~* = 3.2 kA.

Chapter 5 - The safety factor and MUD mode activity 103



100

80

60

40

20

n

1 1 1

Plasma current ^_^^

- /

7
/ I I I

i

-

-

-

-

-

i
20 40 60

Time (ms)
80 100

Fig. 53a Plasma current for discharge R19900718.013. At t= 73 ms, a disruption occurs.

The radial width of the m = 2 island is computed as follows. If the q-profile is assumed

to be parabolic as above, then the derivative q' = 3q/9p = 31 m"1 at p = 0.12 m. The local

poloidal magnetic field is found using Eq. (2.28): q = pB^/(RBe), so Be(p2,i) = 0.16 T. Using

8l2ii as above and Eq. (5.4) it follows that w = 7.4110'"4p2~*= 5.1 cm.

This is in agreement with measurements taken in similar discharges with a multichannel

interferometer that indicate that the typical width of comparable m = 2 islands is 4 cm [Lamm-

91]. It should be noted that the observed island width can be smaller than the width computed

from the magnetic measurements due to the presence of a stochastic layer around the island

separatrix.

Fig. 5.3 shows another example of a density limit disruption (shot R19900718.013).

Fig. 5.3a shows a time trace of the plasma current, in which several 'humps' can be

recognized. The plasma ends at 73 ms with a major disruption. Fig. 5.3b shows the magnetic

activity for m = 1, 2 and 3. At 12 ms a mode of unknown character is destabilized during
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Fig. 5.3b Magnetic activity Smfor m = 1,2 and 3. A strong m = 2 mode sets inatt = 42 ms.

At 68 ms a sews of minor disruptions starts, preceding the major disruption.

the current ramp-up and the induced plasma motion shows up in the m = 1 signal as a spike,

while the plasma cunent shows a temporary increase due to the decrease in plasma inductance.

At 42 ms a m = 2 mode is destabilized, again accompanied by a temporary increase in plasma

current, that grows and at 68 ms leads to a series of m = 2 minor disruptions, terminated at 73

ms by a major disruption. Fig. 5.3c shows a plot of frequency - vs - time of coil Bg(0) on the

outboard side, showing that the m = 2 mode slows down from 10 kHz to 5 kHz immediately

prior to the disruption. This behaviour has also been observed in other tokamaks [Wess-89],

where the slowing-down sometimes progresses to a complete standstill Cmodelock1).

Finally, density limit disruptions without any significant MHD precursor activity have

also been seen. The general picture emerging from the reported observations seems to confirm

the reported density limit behaviour [Wess-89] in detail.
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Fig. 5.3c Frequency - vs - time plot of the signal of pick-up coil B^O), showing the slowing

down of the m = 2 mode. For this analysis the signal was divided into 35 time sections of 25

ms, and for each section a spectrum was made.
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5.4 Observation of pressure inside magnetic islands at JET
At JET, magnetic modes are sometimes observed to rotate slowly with a frequency of around

100 Hz. The density oscillations associated with these modes are measured with the one-

channel interferometer sampling at 1 kHz [Fess-87]. These data are correlated with

simultaneous measurements from the magnetic pick-up coils, the ECE polychromator and the

soft X-ray cameras. Tfte ECE polychromator measures the temperature at discfete points along

a horizontal chord in the midplane and die interferometer measures the line-integral density

along a vertical chord at R = 3.142 m in the same octant (octant 7, see section 5-5).

Fig. 5.4 compares the measured oscillations of the electron temperature, density and

poloidal magnetic field (shot 2308S). The electron temperature trace displays the slow mode

and a fast mode. Analysis of magnetic and Soft X-ray data shows that the slow mode has (m,n)

= (2,1) mode numbers and that it rotates in the direction of the electron diamagnetic drift

Taking account of the symmetry of the mode (m=2) and the poloidal position of the

polychromator and the interferometer, the electron temperature and density oscillations arc in

phase. The poloidal magnetic field oscillations measured by pick-up coils above and below die

midplane show that Bp is minimal in the midplane in octant 4 when the electron temperature in

octant 7 is close to its maximum (the toroidal separation between die diagnostics is 147°). Due

to the toroidal symmetry of the mode (n=l) the poloidal magnetic field and the temperature

oscillations are in phase- The oscillations are therefore associated with a rotating island with an

O-point corresponding to a minimum of Te and ne, assuming that the shear is positive. The

pressure is lower at the island O-point than at its X-point by between 3 and 10%.

This conclusion is at variance with observations at RTP where a strong enhancement of

electron density inside the islands is observed [Lamm-91]. Similarly, the m = 1 'snake' at JET

also displays a strong enhancement of density inside the island, while the temperature decrease

is moderate. All observations in JET and RTP agree, however, that with positive shear the

temperature inside the island is diminished in accordance with die necessity to have 81,,, n
opposite to the main plasma current to sustain the island. Apparendy, die electron pressure

increment 8pe in the island can be either positive or negative depending on the ontogenesis of

the island.
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Fig. 5.4 Time traces displaying the correlation between the ECE electron temperature

measured atR = 356 m by the poly chromator, the line integrated electron density (from the 2

mm interferometer) and two poloidal field pick-up coils for a slowly rotating (2,1) mode after

termination of the PEP phase (shot 23085).
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5.5.7 Abstract

Analysis of MHD activity in Pellet Enhanced Performance (PEP) pulses is used to determine

the position of rational surfaces associated with the safety factor q. This gives evidence for

negative shear in the central region of the plasma. The plasma equilibrium calculated from the

measured q values yields a Shafranov shift in reasonable agreement with the experimental value

of about 0.2 m. The corresponding current profile has two large off-axis maxima in agreement

with the bootstrap current calculated from the electron temperature and density measurements.

A transport simulation shows that the bootstrap current is driven by the steep density gradient,

which results from improved confinement in the plasma core where the shear is negative.

During the PEP phase (m,n) = (1,1) fast MHD events are correlated with collapses in the

neutron rate. The dominant mode preceding these events usually is n = 3, whereas the mode

following them is dominantly n = 2. Toroidal linear MHD stability calculations assuming a non-

monotonic q-profilc with an off-axis minimum decreasing from above to below 1 describe this

sequence of modes (n = 3,1,2), but always give a larger growth rate for the n = 1 mode than

for the n = 2 mode. This large growth rate is due to the high central poloidal beta of 1.5

observed in the PEP pulses. Finally, a routing (m,n) » (1,1) mode is observed as a hot spot

with a ballooning character on die low field side. The hot spot has some of the properties of a

'hot' island consistent with the presence of a region of negative shear.
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5.5.2 Introduction

A regime of enhanced performance in tokamaks can be accessed by deep pellet injection leading

to strongly peaked density profiles in centrally heated plasmas, as first proposed in [Furt-86,

Rebu-86a, Schm-86]. This regime has been achieved in JET by injection of deuterium pellets

into L-mode limiter ICRF heated plasmas [Schm-88]: it is known as the Pellet-Enhanced

Performance (PEP) mode. Similar results, but with neutral beam heating, have been obtained in

Dili [Seng-85], JT60 [Naga-89] and JFT 2-M [Odaj-86].

Compared to similar non-PEP pulses the PEP mode is characterized by a substantial

increase of the neutron rate (by about 5 times), a very strong peaking of the electron density ne

and kinetic pressure near the plasma centre and a relatively small increase of the global energy

confinement time TE (by about 20%). The PEP mode is a transient phenomenon, lasting

typically 1 to 2 s. It is terminated by a rapid loss of central pressure, often associated with

MHD phenomena. It has been suggested [Schm-88] that the abrupt termination of the PEP

mode could be associated with the presence of an unstable non-monotonic profile of the safety

factor q. The negative shear region in the plasma core is thought to be created by a substantial

bootstrap current. The central electron and ion thermal conductivities derived from the

experimental data are reduced by a factor 2 - 3 with respect to the usual anomalous values

[Taro-88]. This reduction of transport parameters could be due to the existence of negative

shear in the plasma centre [Rebu-88].

More recently, in JET the PEP mode has been combined with an H-mode [Tubb-91,

Kups-91]. These shots have produced large values of thermonuclear neutron rate of

approximately 1016 s"1 and fusion product nr}(0)Tj(0)tE = 7102 0 m"3 kcV s in plasmas having

nearly the same electron and ion temperatures (Te ~ T{ ~ 10 keV). The projected deuterium-

tritium fusion rate in JET is much larger in the PEP mode than in non-enhanced plasmas. In

next-step devices, the transient PEP-H mode could be used to ignite the plasma.

It is therefore of great interest to have a better understanding of the MHD behaviour,

plasma equilibrium and transport to improve the performance during the PEP phase. This paper

reports on the analysis of MHD activity measured by several diagnostics at a high sampling rate

in the recent PEP-H mode discharges. Section 5.5.3 gives a brief description of the diagnostics

and of the data analysis methods involved. Section 5.5.4 discusses the experimental results and

their theoretical interpretation and conclusions are given in section 5.5.5. A typical PEP-H

mode pulse is described in section 5.5.4.1 and the MHD behaviour during the PEP phase is

discussed in section 5.5.4.2. The position of rational q-surfaces obtained from MHD mode

110 Chapter 5 - The safety factor and MHD mode activity



analysis provides experimental evidence for negative shear in the plasma core and this is
presented in section 5.5.4.3. A PEP plasma is simulated with a predictive time dependent 1-D
transport code in section 5.5.4.4. The MHD modes observed during the PEP phase are
compared with the predictions of two toroidal linear MHD codes in section 5.5.4.5. In section
5.5.4.6 the topology of a rotating (m,n) = (1,1) mode is analyzed in detail in the region of
negative shear.

5.5.3 Diagnostics and data analysis

5.5.3.1 Diagnostics

The study of MHD activity in JET involves many diagnostics which are located at different

poloidal and toroidal positions. The JET vacuum vessel consists of 8 octants, numbered from 1

to 8 in the counterclockwise direction as seen from the top. The following diagnostics have

been used in these studies:

Magnetic diagnostic: the poloidal field is measured by a poloidal set of 18 pick-up coils

in octant 4 and a toroidal set of 8 such coils located on the outboard side above the midplane

inside the vacuum vessc' Each coil has a frequency cutoff at 10 kHz with a slope of 6 dB per

octave. In addition, a hardware combination of pick-up coils at different toroidal locations

allows measurement of the toroidal mode number n of rotating magnetic modes up to n = 4.

Polychromator: a 12-channel grating polychromator measures the electron temperature

locally from the 2nd harmonic extraordinary mode electron cyclotron emission (ECE) on a

horizontal chord in the midplane in octant 7 [Tubb-85]. The spatial resolution is approximately

0.06 m radially and 0.15 m in the transverse direction.

Radiometer: the electron temperature is also measured by a 44-channcl microwave

heterodyne radiometer from the 1st harmonic ordinary mode ECE on a horizontal chord in the

midplane in octant 7 [Port-91]. This emission may suffer from cutoff at the plasma frequency in

high density pulses. Its spatial resolution is approximately 0.02 m radially and 0.15 m in the

transverse direction.

Soft X-rays: the soft X-ray diagnostic is equipped with a 38-channel vertical camera and

a 62-channel horizontal camera in octant 2 and 16 toroidal diodes (4 of each in octants 1,3,5

and 6 at various elevations above the midplane) [Edwa-86]. The transverse resolution is 0.07 m

in the midplanc for the vertical cameras.
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LIDAR: the LIDAR time-of-flight Thomson scattering diagnostic measures the electron

density and temperature profiles every 1.2 s along a horizontal chord in the mid-plane of octant

5 [Salz-88].

5.5.3.2 Data analysis and correlation between diagnostics

It is difficult to determine the poloidal mode number m from the poloidal set of pick-up coils,

because the signals are affected by the D-shape of the vacuum vessel, the shape of the plasma

for double null discharges and the plasma position. In addition, the pick-up coils measure the

combined effects of all modes present in the plasma with a weight which depends on their

relative amplitude, radial position and mode number. In the PEP pulses, most of the MHD

activity takes place in the central region of the plasma, making the mode number analysis for

these central modes very difficult

The soft X-ray diagnostic provides a powerful tool for local mode number

determination. From the toroidal cameras in combination with a selection of horizontal channels

it it possible to determine the toroidal mode numbers up to n = 4. Analysis of the horizontal and

vertical camera raw data can yield mode numbers up to m = 4. In addition, a static

2-dimcnsional tomographic reconstruction technique can distinguish between poloidal mode

numbers m = 0,1 and 2 [Gran-88]. If m = 0 (m = 1) can be excluded, m = 4 (m = 3) can be

assumed taking into account the symmetries appearing in both cameras and also die properties

of the q-profile. A single-camera (vertical or horizontal) rotational tomographic reconstruction

technique is also available, which can handle mode numbers up to m = 4 [Smeu-83].

In correlating the data measured by die various diagnostics, care has been taken to take

proper account of their relative timing and position. In die present study die direction of die

toroidal magnetic field is counterclockwise and die plasma current is in die clockwise direction

as seen from die top of die vacuum vessel, which determines die nelicity of die magnetic field.

Knowledge of die direction of rotation, frequency and mode numbers of an observed mode is

essential for die correlation. For diagnostics located in die midplane it is only necessary to

know die toroidal mode number, assuming diat die plasma rotation is purely toroidal.

5.5.4 Results and discussion

5.5.4.1 A typical PEP-H mode shot

The PEP-H mode pulses investigated here are obtained by injecting one or several pellets into

double null plasmas during die current rise before die q-profile has fully evolved. Fig. 5.S
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Fig. 5J Time traces of some indicative quantities of a typical PEP plasma. Shown are: (a)

the ICRH input power (there is no NBI in this pulse); (b) the central electron temperature from

the ECE Micheison interferometer and the central Urn temperature from He-Uke nickel radiation

line-broadening; (c) the central and volume-average electron density from the far-infrared

interferometer; (d) the Da emission measured along a vertical chord viewing near the X-point

region; (e) the total kinetic plasma energy derived from the diamagnetic loop measurements; (f)

the total neutron rate; (g) the n= 1 magnetic activity; and (h) the soft X-ray centroid radius

closely related to the magnetic axis radius.
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shows the time variation of signals characterizing a typical PEP-H mode discharge (Pulse No.

23107). The toroidal magnetic field is 2.9 T. The plasma current reaches a constant value of 3.6

MA at 6.0 s. The X-points are formed at 4.0 s, marked by an increase in the D a signal.

Deuterium pellets are injected at 4.75 s (2.7 mm) and at 5.0 s (4.0 mm), causing a decrease in

electron temperature Te and a sharp increase in the central density ne(0) and the D a signal. The

4mm pellet causes a strong peaking of the density profile indicating the beginning of the PEP

mode as can be seen in Fig.5.5c. Subsequently the electron density decreases gradually. At 5.5

s, the ICRF heating is ramped up to 9 MW. In this particular pulse NBI heating is not applied.

During the PEP-L phase, the electron and ion temperatures and the neutron rate increase sharply

from the moment ICRF heating is applied. At 5.9 s there is an L to H transition, indicated by a

slight decrease in the D a signal. During the PEP-H phase the neutron rate reaches a peak value

of 6-1015 s"1. At 6.35 s a central n = 1 MHD event terminates both the PEP phase and the H-

mode and the plasma energy content WD I A decreases sharply. It should be noted that in many

pulses the PEP phase terminates before the end of the H-mode. The PEP phase always takes

place well before the onset of the ordinary sawtooth activity (about 8 s in these shots). The H to

L transition can be seen from an increase in the D a signal and a drop in <ne>. The PEP phase

can be diagnosed by the evolution of the soft X-ray centroid radius, R$XR> which is closely

related to the magnetic axis radius, Rmtg. RSXR is m e position of the maximum of the soft X-

ray emission profile in the midplane as determined by means of the static tomography

technique. R S X R is observed to move strongly outward after starting the ICRF heating due to

the build-up of central pressure caused by the central temperature increase at high density. At

6.35 s, a sudden inward movement is observed corresponding to the termination of the PEP

phase.

5.5.4.2 MHD behaviour during the PEP phase.

During the PEP phase, collapses in the neutron rate occur that are often correlated with fast

MHD events. From the soft X-ray measurements most of these events are found to have (m,n)

= (1,1) mode numbers. The n = 1 mode number is confirmed by the magnetic pick-up coils.

From the soft X-ray and the magnetic diagnostics it is found that rotating modes preceding the

(1,1) event by several tens of ms generally have an n = 3 mode number. In some cases, their

poloidal mode number is determined to be m = 4 from soft X-ray emission analysis. Often a

fast-growing rotating n = 2 mode starts already in the precursor phase of the fast event with a

frequency twice that of the n = 1 mode, indicating that the n = 2 mode arises as a non-linear
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Pulse No: 23100
Fig. 5.6 Time traces

showing the neutron rate, the

signal from a magnetic pick-up

coil and the Be II and C III

emissions measured on vertical

chords through the plasma.

Note that the decay in neutron

rate coincides with the fast n =

1 MHD event. This event

triggers impurity influx.

6.5
Time (s)

consequence of the n = 1 mode [Smeu-91]. After the fast event, generally the n = 1 mode

amplitude decreases strongly and a dominant n = 2 mode is observed with a weak n = 3 mode.

Fig. 5.6 shows a typical example of this behaviour observed in Pulse No. 23100. Impurity

radiation at the plasma edge is enhanced by the crash. The resulting impurity influx may lead to

a long-term dilution of deuterium in the plasma core and a decrease of the neutron rate. Note

that the central ion (from charge exchange measurements) and electron temperatures remain

approximately constant during these crashes, indicating that the D-D cross section is not

affected.

5.5.4.3 Determination of the q-profile

Fig. 5.7 shows the behaviour of the electron temperature Tc at various positions in the plasma

as seen by the polychfomator (Pulse No. 23100). As discussed in the previous section, the fast

event at 6.542 s is an n = 1 mode, which is preceded by a dominant n = 3 mode and followed

by dominant n = 2 modes. The (1,1) fast MHD event does not affect the central electron

temperature. Note the non-sinusoidal character of the oscillations after this event and
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n=3 n=1 n=2
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• R=3.56m

<D

R=3.36m

Fig. 5.7 Time traces of the

electron temperature from the

ECE polychromator at various

radii inside the plasma. The

event at 6542 s is the same as

the one shown in Fig. 5.6.

6.540 6.542 6.544
R=4.04mTime(s)

the slight phase shift between the channels at R=3.56 and R=3.64 m, suggesting that distinct

but coupled modes (on different rational surfaces) may be involved. There is an error of about

0.1 m in the absolute value of the major radii corresponding to the polychromator channel

positions. This is due to the uncertainty in calculating the total magnetic field for these plasmas

with a large bootstrap current and a total current which has not reached a steady state (see

below). The n = 2 modes last about 200 ms until a fast MHD event terminates the PEP phase.

The electron temperature oscillations are in phase with the poloidal field oscillations for the n =

3 and n = 2 modes as expected for rotating magnetic islands.

Fast Soft X-ray data (sampling at 200 kHz) allow determination of the mode numbers of

the oscillations after the n = 1 event. The soft X-ray centroid radius, RSXR = 3.30 m, indicates a

large Shafranov shift. Detailed analysis reveals a (3,2) mode of small amplitude at r = 0.14 m

and a (2,2) mode of large amplitude at r = 0.25 m. The effective relative amplitudes of the

oscillations are plotted as a function of minor radius in Fig. 5.8. Taking into account the

variation in the measured Shafranov shift, the rational surfaces are believed to be at R • 3.15

and 3.42 m for the (3,2) mode and R = 3.02 and 3.52 m for the (2,2) mode. This shows that

the shear is negative in the central region of the plasma. The error in the allocation of the
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Fig. 5.8 The effective

relative amplitude of soft X-

ray oscillations associated with

rotating MHD modes versus

horizontal minor radius as

determined from rotational

tomography. The

corresponding mode numbers

are indicated in the figure.

-0.6

maximum amplitude of a mode is typically the spacing between two diodes, which is of the

order of 0.05 m. The radial displacement of the (2,2) and (3,2) modes has a maximum of about

0.05 m and extends over around 0.15 m of the plasma.

The positions of the rational surfaces deduced from the soft X-ray measurements after

the n = 1 event are used as additional constraints on the plasma equilibrium calculated by the

IDENTD code [Blum-90]. The equilibrium identification is done by minimizing a cost function

that evaluates the deviation between simulated and observed measurements with the constraint

of the Grad-Shafranov equation. IDENTD accommodates measurements of 14 flux loops and

18 pick-up coils at the vacuum vessel, the plasma current, the diamagnetic signal, the total

pressure and safety factor at discrete points. The magnetic flux at the position of the flux loops

is used directly as a boundary condition for the Grad-Shafranov equation and the total plasma

current Ip is equal to the surface integral of the current density. All other quantities are fitted via

minimization of the cost function. The total pressure is approximated by p = ap e with the

Chapter 5 - The safety factor and MHD mode activity 117



PulseNo:23100 JG91 517/2

Fig. 5.9 Computed and measured profiles

for Pulse No. 23100 at t = 6.605 s: (a) a q-

profile calculated using IDENTD and rational

q-values determined from soft X-ray data

analysis; (b) current density profile,

averaged over the flux surfaces, obtained

from IDENTD and bootstrap current

contribution to the total current. The

indicated shaded area reflects the uncertainty

in the bootstrap current calculated from the

local gradients of the measured LIDAR

density and temperature profiles; (c) LJDAR

electron density profile; (d) UDAR electron

pressure profile.

constant factor a of the order of 2 and pe is

the electron pressure from LIDAR (see Fig.

5.9d). The electron temperature Te is

approximately equal to the ion temperature

Tj as shown in Fig. 5.5. The remaining

uncertainty on the pressure is taken into

account by choosing a low weight in the

cost function.

The calculated q-profile is shown in

Fig. 5.9a. The discrepancy between the q-

profile and the positions of the rational

surfaces deduced from the observed mode

activity on the high field side is partly due to

a convergence problem of the algorithm

when an attempt is made to enforce better

agreement with the measurements. In addition, the flux surfaces are assumed to be concentric

ellipses (i.e. in-out symmetric) in the soft X-ray reconstruction used to determine the island

positions, whereas the q-profile is asymmetric because of the large Shafranov shift The soft X-
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ray centroid radius is RSXR
 = 3-30 m and the position of the maximum in the electron pressure

is at R = 3.28 m (see Fig. 5.9d), both comparing fairly well with the magnetic axis radius

calculated by IDENTD (R^g = 3.21 m).

The current density j obtained from IDENTD computations is shown in Fig.5.9b. Note

that the central current density is too low by about 20% from the value of q(0) shown in Fig.

5.9a: this is due to a numerical problem of the equilibrium code, when computing strongly

hollow j-profiles. The innermost 'twin peaks' of the j-profile are correlated with the steep

density gradients in the central region (see Fig. 5.9c). Fig. 5.9b also shows the bootstrap

current contribution to the total current as computed from the LIDAR data [Hirs-88]. The radial

position and amplitude of the calculated bootstrap current matches the deviation of the

reconstructed current profile from a roughly parabolic profile having the same central current

density.

5.5.4.4 Transport simulation of the PEP mode

The evolution of temperature, current and density profiles of Pulse No. 23100 has been

simulated using a predictive time dependent 1-D transport code [Bouc-91] based on the critical

temperature gradient model of plasma transport [Rebu-88]. The simulations provide insight into

the formation of the region of negative shear and into the consequences for transport within this

region.

The computation starts just before the injection of the first pellet at 4.75 s. A large

region (about 40% of the minor radius) with slightly negative shear is created after the injection

of the second and last pellet at 5 s by a combination of three factors: (i) the broad current and q-

profiles in the early phase; (ii) the transient inversion of the temperature profile and

consequently of the current profile by the pellet injection; (iii) a small bootstrap current driven

mainly by the density gradient. The region of negative shear is maintained during the 1 second

of ohmic heating and weak ICRF heating (about 1.5 MW). After the onset of additional power

(10 MW ICRH and 2.5 MW NBI), the bootstrap current increases strongly producing a more

hollow q-profile. Fig. 5.10a compares the simulated q-profile at 6.6 s with that obtained from

IDENTD computations; there is a reasonable agreement, bearing in mind that the transport code

is 1-D, with nested circular flux surfaces that take little account of elongation or shifts in the

magnetic axis, which are considered elsewhere [Taro-91].

The calculated temperature and density profiles are in good agreement with the LIDAR

profiles at 6.6 s (see Fig. 5.10b) and time variations of the central electron temperature (Fig.
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Safety factor a)

O

1

(0
CM

1.8

1.2

0.6

Thermal
conductivities

Ions

5.5
Time (s)

0 0.4 0.8
Normalized radius (r/a)

Fig. 5.10 Results of a PEP pulse simulation obtained with a time dependent 1-D transport

code (solid curves), (a) The dashed curve is the q-profile calculated by IDENTD. (b) The dotted

curves are the electron temperature Te and density ne profiles measured by LJDAR. (c) The

transport is reduced within the region of negative shear as shown by the lower thermal

conductivities, (d) The dotted line is the central electron temperature TJO) measured by the

Michelson interferometer as a function of time, (e) The dotted curve is the experimental neutron

yield versus time.

120 Chapter 5 - The safety factor and MHD mode activity



5.10d) and neutron yield (Fig. 5.10e) are also well reproduced. In line with SAC critical electron

temperature gradient model, it is necessary to reduce ion heat conduction and panicle transport

to neoclassical levels within the region of reversed shear. It is also necessary to reduce the

electron transport to about 0.5 to 1 times ion neoclassical levels, that is, comparable to electron

neoclassical levels, if poloidal variations in the electric potential are important |Stri-91J. The

reduced transport inside the region of negative shear is shown in Fig. 5.10c by the lower

thermal conductivities. Outside this region experimental data are well represented by the

anomalous transport of the critical electron temperature gradient model. The conclusions of this

simulation are similar to those obtained previously for other discharges with a predictive IT D

equilibrium-transport code |Taro-91 ].

t

o
a

5.5.4.5 Mode stability computation

To see how the n = 3,1,2

sequence of modes observed

in shot 23100 compares with

theory, a series of toroidal

MHD calculations have been

performed. For these

calculations the resistive linear

MHD code FAR (Chai-90] is

used. The equilibria are

specified by defining the

plasma boundary shape and

the pressure and q profiles.

The plasma boundary shape,

determined from external

magnetic measurements, has

an elongation of 1.67 and a

triangularity of 0.27. The

pressure profile is obtained

from the LIDAR data and its

magnitude is adjusted to match

the measured diamagnetic

pressure to take into account
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Fig. 5.11 The growth rate of instabilities with toroidal

mode numbers n= 1,2 and 3, computedy r a range ofq-

profiles. Non-monotonic q-profiles are used with aq on

axis of 1.6 and an off-axis minimum qmin at r/a = 0.3. An

example of some of these q-profiles is shown in the inset.
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the ion contribution. The average Pp is 0.29 during the n = 3 activity and is 0.38 during the n =

1 and 2 activity. The q-profile is constrained to match the experimental total plasma current,

which essentially determines the edge q. The central q is fixed at 1.6 and a sequence of

q-profiles are considered ranging from slightly to strongly non-monotonic, with a minimum

qmin at r/a = 0.3, as shown in the inset in Fig. 5.11. This series of q-profiles is consistent with

the experimental data discussed in section 5.5.4.3: the soft X-ray analysis indicates that the

q-profile is inverted with q = 3/2 and q = 1 rational surfaces at r = 0.14 m and 0.25 m

respectively after the fast (m,n) - (1,1) MHD event; in addition, the off-axis minimum of q is

well above 1 just after pellet injection and decreases slowly towards a value below 1 as shown

by the change from (m,n) = (4,3) to (2,2) activity. The results of the computation of the n =

1,2,3 growth rates (normalized to the poloidal Alfve'n time xA = 0.2 us) are plotted in Fig. 5.11

versus qmin. These calculations are resistive with a magnetic Reynolds number (as defined in

[Cnar-90]) of s = 106. The n = 1 and 2 modes are ideally unstable kinks as is the n = 3 mode

for q^,, < 1.15. It can be seen from Fig.5.11 that as q,^,, decreases the instabilities appear in

the correct experimental sequence n = 3,1,2. A difficulty is that the n = 2 mode always grows

more slowly than the n = 1 mode contrary to the experimental observation. It may be that a

nonlinear simulation or the adcition of terms not included in the MHD model could make the n

= 2 mode dominant for q,^,, < 1. The very large growth rate of the n = 1 mode for q,,,^ < 1.1

arises because the central poloidal beta [Buss-75] calculated from the LIDAR pressure profile is

about 1.5, well above the critical value of around 0.3 when q,,^ = 1.

As the q-profile is not directly determined during the n = 3 activity, the sensitivity of the

n = 3 growth rate to variations of q has been examined. For example, when raising the central q

to 2, the dependence of the n = 3 growth rate on q ^ is very similar to that shown in Fig. 5.11,

though its maximum is 25% larger. It can thus be concluded that the n = 3 results are not very

sensitive to details of the q-profile within the likely experimental range.

The growth rates of the n = 1, 2 and 3 modes have also been computed with the toroidal

linear resistive MHD code CASTOR [Kern-91]. The results of the calculation confirm those

obtained with the FAR code.

The question arises what is the effect of fast ions produced by ICRF heating on the

stability of the m = 1 kink during the PEP mode. For Pulse No. 23100, the ICRF heating

power is of the order of 10 MW and creates a significant fraction of fast ions; their total energy,

calculated using a Fokker-Planck code, is of the order of 0.5 -1.0 MJ, compared to about 6 MJ

for the total plasma energy. The computed kinetic energy of the fast ions is in the range 100 -

200 keV, when the q = 1 surface appears in the plasma. The radial profile of their energy
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density is found to have its maximum within 0.03 m of the magnetic axis and to be almost zero

at 0.3 m from the magnetic axis. Thus, most of the fast ions are located within the q = 1 surface

measured at 0.25 cm (set Section 5.5.4.3». Under these conditions, for the non-monotonic q-

profile observed during the PEP mode, the fast ions should be destabilizing for the m = 1 kink,

when qmin is just above 1 [Porc-91].

5.5.4.6 Topology of a rotating (m,n) = (1,1) mode

Fig. 5.12 shows the temporal

behaviour of the electron

temperature from the ECE

radiometer (Pulse No. 23103).

The oscillations at R = 3.61 m

are of large amplitude and

appear in a few channels only,

indicating that they are

localized radially, and show

non-sinusoidal behaviour.

They are located in a region

where the electron temperature

gradient is very steep. The

toroidal mode number

measured by the magnetic

pick-up coils is n = 1 and the

poloidal mode number is m ~

5 due to mode coupling. We

have performed a correlation

analysis between the

temperature (from the ECE

radiometer) and poloidal

magnetic field oscillations,

taking into account the toroidal

separation of these diagnostics

and the n = 1 symmetry of the

0.9

0.8

f 0.7
N

T t
 (

no
rm

al
o

0.5

0.4

Pulse No: 23103

-

- A/I
r

JGBIS12S

W v w ^
-

1

I
I/ j V R=3.61m

A . R=3.64m"
\ / \ / \ /VVV~~^^VVV'

6.840 6.842 6.844
Time (s)

6.846

Fig. 5.12 Electron temperature versus time as measured

by various channels of the ECE radiometer. Note the large

amplitude of the oscillations atR = 3.61 m and their non-

sinusoidal behaviour. Due to difficulties in the absolute

calibration for this pulse, only normalized temperatures are

shown. The relative {channel-to-channel) uncertainty in the

profile is + 5%.
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Fig. 5.13 Line integrated soft X-ray emissivity measured by the vertical camera showing the

ballooning character of the (1,1) mode. The brightness measured in W/m2 by each channel is

j iven with the relative amplitude of the oscillation. The plasma centre atR* 330 m is viewed

by channel 23. The (1,1) mode amplitude is larger on the low-field side (channel 27) than on

the high-field side (intermediate between channels 18 and 19).
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0.4-

mode: the maximum in electron temperature corresponds to a maximum in poloidal field. From
SXR fast data (200 kHz sampling) we find that the central dominant mode is (m,n) = (1,1).
The temperature maximum corresponds to a maximum in soft X-ray emission. The mode
rotates counter-clockwise toroidally, i.e. in the direction of the electron diamagnetic drift and
opposite to the neutral beams. In addition, the measurements from the vertical camera displayed
in Fig. 5.13 indicate that the mode has a ballooning character: it is stronger on the low field side
(channel 27) than on the high field side (intermediate between channels 18 and 19). The soft X-
ray centroid has a radius RSXR = 3.30 m.

The soft X-ray

rotational tomographic

reconstruction (Fig. 5.14)

displays the (1,1) mode at r =

0.22 m. The rotating structure

has a small poloidal extent and

0.2f- / 11 WIN/ • "N WGKSEIW X H docs not affect the core of the
J f I M ^B^B^B^U M f M § \ \^B^^l \^BPV^B^« 1 \ ^F

plasma. It corresponds to a

radial displacement, which has

a maximum of around 0.05 m

and extends over about 0.1m

of the plasma. It could be

interpreted as the O-point of a

(1,1) island.

The soft X-ray

measurements suggest the

existence of another mode near

the plasma centre (r - 0.1 m),

which has tentatively been

identified as (m,n) * (2,1). A

plasma equilibrium with a

central value of q around 2 can

indeed be obtained with the

IDENTD code; so a (2,1) island cannot be excluded close to the magnetic axis.

Magnetic islands can be sustained by a current perturbation oj flowing inside. In this

case, the core of the island with nested surfaces is expecied to have a smaller poloidal extension

N 0

-0.2-

-0.4b
36

R(m)

Fig. 5.14 Rotational tomographic reconstruction of the

soft X-ray emissivity showing an {mjn) = (I.I) mode.
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than the region surrounding the X-points of the separatrix, which is easily destroyed by chaos,

since filaments carrying parallel current attract each other. From Ampere's law, it follows that

the current perturbation 8j inside the island is opposite to the main plasma current j when the

shear q' is positive and in the same direction as j when q' is negative. If the current perturbation

oj is due to a thermal instability inside the island, it depends on the electron temperature through

the resistivity and Ohm's law. The resulting island is then colder than the surrounding plasma

when q' is positive and wanner when q' is negative [Rebu-84]. It follows that the electron

temperature oscillations associated with a rotating thermal island measured at a fixed location in

the plasma are expected to be non-sinusoidal: for a 'hot' island, the maximum is of shorter

duration than the minimum.

The non-sinusoidal behaviour of the oscillations observed by the ECE and soft X-ray

diagnostics seems to suggest at first the (1,1) mode structure is a 'hot' island. This agrees with

the existence of negative shear in the central region of the plasma as inferred above. However,

the ballooning character of the (1,1) mode observed experimentally is not explained by the

thermal island model [Rebu-84]. In addition, from the shear computed by IDENTD of q*» -S

m"1 and the relative temperature oscillation amplitude 5Te/Te * 0.S at the island position, the

width calculated for a thermal island is about O.S m, much larger than that observed. Although

there is a large uncertainty in the shear determination, this calculation suggests that the island

could be strongly stabilized by some mechanism reducing its width such as bootstrap current in

the region of negative shear.

There remains the difficulty that the ideal MHD internal kink should be violently

unstable when the off-axis minimum of q is less that unity (see Fig. 5.11). Thus, if the (1,1)

mode is a true island, the internal kink must be stabilized by some unidentified mechanism or

by a nonlinear process taking into account the change in topology due to the presence of the

island. Alternatively, the (1,1) mode might be a local distortion of the flux surfaces with the

minimum in q just below the marginal value for the n = 1 mode destabilization («• 1.1 for the

case shown in Fig 5.11). However, the topology of the nonlineariy saturated state computed in

[Holm-88] does not evidently explain the observation of a localized hot spot on the low field

side.
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5.5.5 Conclusions

MHD modes occurring during the Pellet Enhanced Performance (PEP) mode have been studied

in this paper. Analysis of soft X-ray data has led to the determination of the position of rational

q-surfaces, showing that the shear is negative in the central region of the plasma. In a particular

pulse, (m,n) = (3,2) and (2,2) modes are found at radii r = 0.14 and 0.25 m respectively. The

measured positions of the q = 1 and q = 1.5 surfaces are used as additional constraints to the

plasma equilibrium which shows a Shafranov shift in reasonable agreement with that obtained

from the soft X-ray measurements (about 0.20 m). The calculated current profile displays large

off-axis peaks consistent with the bootstrap current computed from the measured electron

density and temperature profiles. A predictive time-dependent 1-D transport code shows that the

bootstrap current is maintained by the improved confinement in the central region of the plasma

where the shear is negative: the ion transport coefficients are reduced to their neoclassical values

in line with the critical temperature gradient model; electron transport coefficients also have to

be reduced within this region and in this case are set to about 0.5 to 1 times ion neoclassical

levels.

During the PEP phase fast (m,n) = (1,1) MHD events often occur close to the maximum

in the neutron rate. These events are usually preceded by n = 3 modes and followed by

dominant n = 2 modes. This sequence of modes (n = 3,1,2) appears in calculations obtained

with two different toroidal linear MHD codes assuming a non-monotonic q-profile with an off-

axis minimum q , ^ which is decreasing from above to below 1. However, the n = 2 mode is

always less unstable than the n * 1 mode, contrary to the experiment. The large growth rate

calculated for the n = 1 mode for q . ^ ^ 1.1 is due to the high value of the central poloidalbeta

of 1.5 characteristic of the PEP mode. A rooting (m,n) = (1,1) mode has been studied in detail:

it has the appearance of a localized hot spot ballooning at the low field side of the plasma. This

hot spot has some characteristics of a 'hot' island consistent with the pretence of negative shear

in the plasma core. Both experimental observations (n = 2 mode after the (1,1) MHD events

and hot spot) suggest that the internal kink is strongly stabilized by some mechanism or by a

nonlinear process taking into account the change in topology due to the presence of islands.
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Appendix

Table of symbols and definitions

Most of the symbols used are explained where they appear, unless their meaning is assumed to

be known. Here, some of the more important symbols are listed along with their definitions.

Note: \|f is normalized such that \p = 0 on the magnetic axis and Y = 1 at the plasma boundary.

The symbol Rp refers to the pole of the toroidal coordinate system and does not necessarily

coincide with RQ, the major radius of die tokamak.

Symbol Unit

{m3}

Definition

IArea of a potoidal plasma cross-section: I dRdZ

Plasma volume: 2% I R dA

amin
bmin

6
E

{A}

im)
{m}

im)

(m)

{m}

(m)

{dimentioolesc)

{dimetuioaleM)

Total current: I j ^ dA

Minor radius: ( R ^ C Y - 1 ) - R» . (¥
Minor radius: (Z^Cy «1) - Z^Op -1))/2
Potttion of pi. bound: <R»«<Y - 1) +
Position of pi. bound.: (Z^Cy «1) + "

[ * l
il/2

Current centre:

Current centre:

Position of magnetic axis: RCy «0)

Position of magnetic axis: Z(y « 0)

Normalized Snafnoov shift: [R,,^ -

Inverse aspect ratio:

1)V2
l))/2
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Symbol

q = q¥

Qcyl

Unit Definition

P

P.

k

A

{dimcnsionless}

{dimcnsioolcssj

{dimensionless}

{dimcnsionleu}

{dimensioalesg}

{dimeasioaleaf}

i_ f I
2* J R

{dimensionless} Safety factor

{dimensionless} Cylindrical safety factor

Shear

Local beta: ,
B2

Toroidal beta:

Poloidal beta:

Imemalinduction:

,<P>-^p J p(V)dV

Shafiranov pm
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