revisione 10 luglio 2025

Moto stazionario di una sfera conduttrice attraverso un fluido tenue conduttore, in un campo esterno di induzione magnetica uniforme e di intensità moderata

claudio magno

Michael Faraday (1791-1867)

INDICE

INTRODUZIONE	p. III
LO SCENARIO DEL PROBLEMA	p. IV
I. MOTO TRASLAZIONALE UNIFORME IN REGIME DI FLUSSO STAZIONARIO	Р. 1
II. MOTO ROTAZIONALE UNIFORME IN REGIME DI FLUSSO STAZIONARIO	Р. 17
APPENDICE Funzioni Armoniche Sferiche dalla soluzione generale dell'Equazione DDP di Laplace	Р. 29 Р. 30
BIBLIOGRAFIA	Р. 34

INTRODUZIONE

L'argomento si presta a un'applicazione significativa dell'*Elettrodinamica Classica (Maxwelliana)* e della soluzione generale di un'*equazione di campo* pertinente in serie di *autofunzioni ortogonali*. Possibili effetti relativistico-speciali sono completamente trascurati.

Le equazioni dominanti sono quelle differenziali del 2º ordine *a derivate parziali* di *Laplace* e di *Poisson* in coordinate *sferiche*, opportunamente condizionate alla frontiera sferica.

Concretizzazioni del modello sono il moto idro-elettrodinamico *stazionario* di una sonda sferica ohmico-metallica in un fluido elettrolita di viscosità trascurabile (e.g., prossimo alla transizione ordinaria in fase gassosa o di vapore) o di un satellite artificiale che attraversa una fascia ionosferica, costituita da un plasma *tenue* e, pertanto, di densità poco apprezzabile o evanescente, almeno in prima approssimazione.

I moti *traslazionale* e *rotazionale* sono discussi separatamente in forma di *problema*, concisa ma diretta. La loro sovrapposizione (roto-traslazione), nel rispetto dei principî classici di Conservazione, si ottiene in modo immediato ed elementare ed è lasciata a chi legge.

Le unità di misura usate qui sono quelle del SI (i.e., del Sistema MKSA Razionalizzato), a favore di un'*audience*' più ampia di quella costituita da soli fisici

Questo phys-notebook, pensato e adattato a un uso didattico universitario avanzato, dove trovino spazio applicazioni e metodi di calcolo modellistico (non sempre facilmente reperibili in forma esplicita, integrata e dettagliata in maniera adeguata), si ispira, in conformità stretta, agli articoli seguenti:

- BULLARD, E. C., Proc. Roy. Soc. A, 199 (1949), 413,
- LUDFORD, G. S. S. MURRAY, J. D., Journal of Fluid Mechanics, 7 (1960), 516,
- REITZ, J. R. FOLDY, L. L., Journal of Fluid Mechanics, 11 (1961), 133.

Nella **Bibliografia**, ho voluto fornire riferimenti generali sufficienti anche per i metodi matematici necessari. Alcuni di tali riferimenti sono scaricabili liberamente dalla *pagina*-**Biblioteca** di questo web-site.

СМ

Lo scenario del problema

Una sfera solida, elettricamente neutra, di raggio a, si muove di moto stazionario non-relativistico immersa in un fluido *tenue* (i.e., di densità trascurabile). Il fluido è costituito di portatori di carica elettrica liberi e in *equilibrio dinamico statistico* ([†]).

Sia la sfera che il fluido sono *conduttori* 1. i. o. (lineari, isotropi, omogenei), di *conduttività* $\kappa_1 \in \kappa_2$ rispettive; il sistema sfera-fluido interagisce con un campo *esterno* di *induzione magnetica* (o, più brevemente, un *campo magnetico*) B_0 *uniforme* e di intensità *moderata* ($\propto 10^{-6}$ - 10^{-5} T).

L'ordine di grandezza caratteristica del volume occupato dal fluido è *estremamente* maggiore (\gg) (e.g., *almeno* 10⁶ volte maggiore) di quello della sfera.

Fig. 1 - Simulazione di fluttuazioni TEM 4-polari pure in un plasma tenue (plasma dance 1).

Alcuni concetti essenziali relativi all'equilibrio dinamico statistico (semi-classico) sono discussi, e.g., nel phys-notebook: Il Modello Statistico semi-classico del Gas Ideale.

I. Moto traslazionale uniforme in regime di flusso stazionario

Sia v_0 la velocità *uniforme* della sfera nel fluido.

- I.1 Si discutano la natura e le caratteristiche del *campo elettrico* e la *densità di corrente* corrispondente indotti *ovunque*, sia all'interno che all'esterno della sfera;
- I.2 si determinino le *condizioni di frontiera* sufficienti compatibili con il problema;
- **I.3** si ottenga *ovunque* un'espressione del campo elettrico *totale*;
- I.4 si calcoli la densità di carica elettrica indotta sulla superficie della sfera;
- 1.5 si calcoli la *potenza termoelettrica* totale dissipata (effetto Joule), causata dalle correnti parassite indotte che circolano attraverso l'intero sistema sfera-fluido. Quindi, si determini la *forza resistente* netta, F_R , subìta dalla sfera nel fluido;
- I.6 si esprima la variazione di *entropia* della sfera, alla temperatura stazionaria $T(\mathbf{r})$, in un intervallo di tempo Δt , tra stati terminali di equilibrio termodinamico, discutendo le condizioni magnetiche sufficienti per il suo moto *adiabatico* nel fluido;
- I.7 si trovi la forza totale sulla sfera, separandone le componenti longitudinale e trasversa.

Soluzione

Preliminari idrodinamici

Se, inizialmente, $v_0 \equiv v_0 \hat{z}$, con $v_0 > 0$, rappresenta la velocità della sfera nel fluido *stazionario*, appare più conveniente impostare il problema vs. il sistema di riferimento fissato *nel centro* della sfera, l'*s*-*sistema*, cosiddetto. Rispetto a questo, invece, si osserva un fluido di estensione infinita che scorre uniforme nel verso $-\hat{z}$, contornando *laminarmente* la sfera stazionaria. Pertanto, la velocità *indisturbata* del fluido, a distanza r molto grande dal centro della sfera $(r \gg a)$, è

$$\boldsymbol{v}_{\infty} = -\boldsymbol{v}_{0}\hat{\boldsymbol{z}}.$$

D'altra parte, quanto più una linea di flusso del fluido si avvicina alla sfera tanto più il suo profilo rettilineo indisturbato si deforma nell'aggiramento dell'ostacolo sferico.

Poiché il fluido è un mezzo *l. i. o.* e di viscosità trascurabile, il suo flusso apparirà *stazionario* e *senza vortici*. Matematicamente, questo significa che il *campo di velocità* del fluido, $v \equiv v(r)$, è sia *solenoidale*, i.e.,

$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0, \tag{1}$$

come si deduce dall'equazione di continuità della massa non-relativistica, sia irrotazionale, i.e.,

$$\nabla \times v = 0. \tag{2}$$

Inoltre, deve valere la condizione asintotica

$$\lim_{r \to +\infty} \boldsymbol{v} = \boldsymbol{v}_{\infty} \equiv -\boldsymbol{v}_{0} \hat{\boldsymbol{z}} \,. \tag{3}$$

L'Eq. (2) implica l'esistenza di una funzione-potenziale scalare, $r \mapsto U(r)$, detta il *potenziale di velocità*, tale che

$$\boldsymbol{v} = -\boldsymbol{\nabla} U(\boldsymbol{r}). \tag{4}$$

In sé, l'una o l'altra scelta $v \equiv \pm \nabla U$, diversamente che in Elettrodinamica, parrebbe una questione più formale che sostanziale. D'altra parte, la scelta del segno '-' si adatta alla dinamica nel Campo Gravitazionale in modo più 'naturale'; invece, in un *Campo Elettromagnetico*, essa è *obbligata*. L'Eq. (1) equivale all'*Equazione di Laplace*

$$\nabla^2 U(\mathbf{r}) = 0. \tag{5}$$

Poiché $v_{\infty} = -v_0 \hat{z}$, la simmetria *azimutale* del fluido vs. la direzione del suo moto e la geometria della sfera suggeriscono di esprimere $U(\mathbf{r})$ in coordinate sferiche mediante un'espansione in serie di *Funzioni Armoniche Zonali*, ciascuna fattorizzata in un termine *radiale* puro e in un termine *angolare sferico* vs. le coordinate $\theta \in \varphi$ (v. Eq. (30)). Risulta, per *simmetria azimutale* (v. [¹³], [¹⁴]),

$$U(\mathbf{r}) \equiv U(r,\theta) = v_0 \left(r + \frac{a^3}{2r^2} \right) \cos\theta + U_0, \tag{6}$$

essendo U_0 una costante di riferimento arbitraria di integrazione (delle stesse dimensioni di U). Sviluppando l'Eq. (4), si scrive

$$\boldsymbol{v} = -\boldsymbol{v}_0 \boldsymbol{\nabla} (r \cos \theta) - \frac{a^3 \boldsymbol{v}_0}{2} \boldsymbol{\nabla} \left(\frac{\cos \theta}{r^2} \right)$$
(7)

$$= -v_0 \hat{z} + \frac{a^3 v_0}{2} \frac{\hat{r} 2 \cos \theta + \hat{\theta} \sin \theta}{r^3} \equiv v(r, \theta).$$
(8)

La condizione asintotica (3) è soddisfatta. Ovviamente, il termine *dipolare* nei membri destri delle Eq. (7) e (8) descrive la distorsione delle linee di flusso del fluido intorno alla sfera a distanza ravvicinata. Lo si può manipolare opportunamente per ottenere rappresentazioni *generali* di v. Infatti, se si osserva che

$$-v_0 \boldsymbol{\nabla} \left(\frac{\cos \theta}{r^2} \right) \equiv \boldsymbol{\nabla} \left(\frac{-v_0 \hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{r}}}{r^2} \right) \equiv \boldsymbol{\nabla} \left(\boldsymbol{v}_{\infty} \cdot \frac{\hat{\boldsymbol{r}}}{r^2} \right)$$

e che

$$v_0(\hat{\boldsymbol{r}} 2\cos\theta + \hat{\boldsymbol{\theta}}\sin\theta) \equiv v_0(\hat{\boldsymbol{r}} 3\cos\theta - (\hat{\boldsymbol{r}}\cos\theta - \hat{\boldsymbol{\theta}}\sin\theta)) \equiv \hat{\boldsymbol{r}} 3v_0\cos\theta - v_0\hat{\boldsymbol{z}}$$
$$\equiv \boldsymbol{v}_{\infty} - (3\boldsymbol{v}_{\infty}\cdot\hat{\boldsymbol{r}})\hat{\boldsymbol{r}},$$

è corretto scrivere

$$\boldsymbol{v} = \boldsymbol{v}_{\infty} + \frac{a^3}{2} \boldsymbol{\nabla} \left(\boldsymbol{v}_{\infty} \cdot \frac{\hat{\boldsymbol{r}}}{r^2} \right), \tag{9}$$

o, in forma equivalente (cf/c [¹³], [¹⁴]),

$$\boldsymbol{v} = \boldsymbol{v}_{\infty} + \frac{a^3}{2} \frac{\boldsymbol{v}_{\infty} - (3\boldsymbol{v}_{\infty} \cdot \hat{\boldsymbol{r}})\hat{\boldsymbol{r}}}{r^3} , \qquad (10)$$

eliminando qualsiasi riferimento particolare alla direzione e al verso di v_{∞} .

Nel seguito, le quantità riferite alla regione *interna* alla sfera sono contraddistinte dal pedice 1 mentre il pedice 2, rappresenta le quantità pertinenti alla regione *esterna* alla sfera, totalmente occupata dal fluido.

I.1 Lo spazio fisico totale può essere rappresentato, nell' *s*-sistema, come l'unione di due regioni contigue, la regione occupata dalla sfera e quella occupata dal fluido.

Un osservatore solidale *con la sfera* (*s*-*osservatore*) è in grado di misurare il *campo elettrico magneto-motore* $\mathbf{\mathcal{E}}'$ indotto dall'accoppiamento vettoriale tra il campo di velocità del fluido e il campo di induzione magnetica esterno \mathbf{B}_0 .

Poiché la sfera è impenetrabile per il fluido, i.e., $v \equiv 0$ per $r \in [0, a)$, la rappresentazione spaziale completa di \mathcal{E}' è data da

$$\mathbf{\mathcal{E}}' \equiv \begin{cases} \mathbf{\mathcal{E}}'_1 = \mathbf{0}, & \text{per } r \in [0, a), \\ \mathbf{\mathcal{E}}'_2 = \mathbf{v} \times \mathbf{B}_0, & \text{per } r \in [a, +\infty). \end{cases}$$
(11)

Inoltre, \mathbf{E}'_2 risulta non solo stazionario vs. l'*s*-*sistema di riferimento* ma, anche, *solenoidale*, come si verifica prontamente:

$$\nabla \cdot \mathbf{\mathcal{E}}_{2}' = \nabla \cdot (\mathbf{v} \times \mathbf{B}_{0}) = \mathbf{B}_{0} \cdot (\nabla \times \mathbf{v}) - \mathbf{v} \cdot (\nabla \times \mathbf{B}_{0})$$
$$= \mathbf{B}_{0} \cdot \left(\nabla \times \mathbf{v}_{\infty} + \frac{a^{3}}{2} \nabla \times \mathbf{\mathcal{P}}\left(\mathbf{v}_{\infty} \cdot \frac{\mathbf{r}}{r^{2}}\right) \right) \equiv 0,$$
(12)

essendo sia B_0 che v vettori uniformi e applicando l'identità generale $\nabla \times \nabla f(\mathbf{r}) = 0$. Comunque, il fatto che \mathbf{E}'_2 *non sia* irrotazionale ha conseguenze significative. Si incomincia dallo sviluppo vettoriale

$$\nabla \times \mathbf{\mathcal{E}}_{2}' = \nabla \times (\mathbf{v} \times \mathbf{B}_{0})$$
$$= (\nabla \cdot \mathbf{B}_{0}) \mathbf{v} - (\nabla \cdot \mathbf{v}) \mathbf{B}_{0} + (\mathbf{B}_{0} \cdot \nabla) \mathbf{v} - (\mathbf{v} \cdot \nabla) \mathbf{B}_{0},$$

nel quale, il primo e il quarto termine svaniscono per l'uniformità di B_0 mentre il secondo termine è nullo per la solenoidalità del campo v, v. Eq. (1) (\Rightarrow regime *stazionario* di flusso). La verifica della *rotazionalità* (*vorticità*) di $\mathbf{\mathcal{E}}_2'$ prosegue esplicitando v nell'addendo rimanente con l'Eq. (10):

$$\nabla \times \mathbf{\mathcal{E}}_{2}' = (\mathbf{B}_{0} \cdot \nabla) \mathbf{v} = (\mathbf{B}_{0} \cdot \nabla) \cdot \mathbf{v}_{\infty} + \frac{a^{3}}{2} (\mathbf{B}_{0} \cdot \nabla) \frac{\mathbf{v}_{\infty} - (3\mathbf{v}_{\infty} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}}{r^{3}} = \dots$$
$$= \frac{3a^{3}}{2r^{4}} (5(\mathbf{v}_{\infty} \cdot \hat{\mathbf{r}})(\mathbf{B}_{0} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} - (\mathbf{B}_{0} \cdot \hat{\mathbf{r}}) \mathbf{v}_{\infty} - (\mathbf{B}_{0} \cdot \mathbf{v}_{\infty}) \hat{\mathbf{r}} - (\mathbf{v}_{\infty} \cdot \hat{\mathbf{r}}) \mathbf{B}_{0}) \neq \mathbf{0}.$$
(13)

L'assenza di un campo elettrico *magneto-motore* indotto all'interno della sfera, $\mathbf{\mathcal{E}}'_1 = \mathbf{0}$, implica che $\mathcal{\mathcal{E}}'_{1,r} = 0$, ovviamente. A sua volta, $\mathbf{\mathcal{E}}'_2$ può essere separato nelle sue componenti *normale* e *tangenziale*, $\mathbf{\mathcal{E}}'_2 \equiv \mathbf{\mathcal{E}}'_{2,\perp} + \mathbf{\mathcal{E}}'_{2,\parallel}$, appropriate alla geometria del problema. Si ha

$$\begin{cases} \boldsymbol{\mathcal{E}}_{2,\perp}' \equiv \mathcal{E}_{2,r}' \hat{\boldsymbol{r}}, \\ \boldsymbol{\mathcal{E}}_{2,\parallel}' \equiv \mathcal{E}_{2,\theta}' \hat{\boldsymbol{\theta}} + \mathcal{E}_{2,\varphi}' \hat{\boldsymbol{\varphi}}. \end{cases}$$
(14)

Ora, si ritorni alla descrizione spaziale di \mathcal{E}' , Eq. (11). Poiché $\mathcal{E}'_{1,r} = 0$ mentre, in generale, è $\mathcal{E}'_{2,r}(a, \theta, \varphi) \neq 0$, la componente *normale* di \mathcal{E}' mostra una *discontinuità* alla superficie della sfera. Questo effetto di 'flip' è sufficiente per provocare una ridistribuzione delle cariche libere all'interfaccia tra i due mezzi conduttori. Le cariche libere interne alla sfera non subiscono

alcuna azione *magneto-motrice*, mantenendosi in equilibrio statistico medio nei siti reticolari di conduzione. Le *forze di taglio* associate a $\mathcal{E}'_{2,r}(a, \theta, \varphi)$ muovono le cariche di superficie finché

esse raggiungono la nuova configurazione stazionaria di equilibrio.

Comunque, *non si determina alcun eccesso di carica sulla sfera*: l'equilibrio elettrostatico tra la tensione elettromotrice *tangenziale* e le forze coulombiane di reazione esercitate dalle cariche libere superficiali spostate viene raggiunto dopo un transitorio quasi istantaneo.

Questa distribuzione indotta di cariche superficiali genera, a sua volta, un campo *elettrostatico* ulteriore, $\mathbf{\mathcal{E}}^*$, *ovunque*. La ragione per la quale possa persistere un campo elettrostatico all'interno dei due mezzi conduttori è che esso è indotto, e *sostenuto*, dal regime stazionario di flusso del fluido in presenza del campo esterno di induzione magnetica ($\Rightarrow \mathbf{\mathcal{E}}'_2 = \mathbf{v} \times \mathbf{B}_0$).

Quindi, il campo elettrico totale si scrive, in generale,

$$\boldsymbol{\mathcal{E}} \equiv \begin{cases} \boldsymbol{\mathcal{E}}_{1} = \boldsymbol{\mathcal{E}}_{1}^{\prime} + \boldsymbol{\mathcal{E}}_{1}^{*} = \boldsymbol{\mathcal{E}}_{1}^{*}, & \text{per } r \in [0, a), \\ \boldsymbol{\mathcal{E}}_{2} = \boldsymbol{\mathcal{E}}_{2}^{\prime} + \boldsymbol{\mathcal{E}}_{2}^{*} = \boldsymbol{v} \times \boldsymbol{B}_{0} + \boldsymbol{\mathcal{E}}_{2}^{*}, & \text{per } r \in (a, +\infty). \end{cases}$$
(15)

Si noti l'esclusione della superficie sferica singolare (sorgente) posta alla distanza r = a.

I risultati della discussione precedente sono sintetizzabili come segue:

nell's-sistema, con $\mathcal{E}'_{2,r}(a, \theta, \varphi) \neq 0$,

- a. una distribuzione stazionaria non-uniforme di portatori di carica elettrica libera è indotta sulla superficie della sfera, originando campi *elettrostatici*, $\boldsymbol{\mathcal{E}}_1^*$ e $\boldsymbol{\mathcal{E}}_2^*$, interni alla sfera e al fluido, rispettivamente;
- b. poiché tutte le cariche-sorgente sono confinate sulla frontiera sferica tra i due mezzi, non ci sono cariche-sorgente *di volume* altrove. Pertanto, $\nabla \cdot \mathbf{\mathcal{E}}_1^* = 0$ e $\nabla \cdot \mathbf{\mathcal{E}}_2^* = 0$ per $r \neq a$. In altri termini, $\mathbf{\mathcal{E}}_1^*$ e $\mathbf{\mathcal{E}}_2^*$ sono determinabili da due funzioni potenziale *distinte*, $\boldsymbol{\Phi}_1^*$ e $\boldsymbol{\Phi}_2^*$, che soddisfano l'*Equazione di Laplace* all'*interno*, rispettivamente, di entrambi i mezzi.

L'inclusione formale della discontinuità radiale di campo, dovuta alle sorgenti alla frontiera r = a, muta le *Equazioni di Laplace interna* ed *esterna* in *Equazioni di Poisson generalizzate*,

dove $\sigma(\theta, \varphi)$ è la densità di carica elettrica indotta sulla superficie della sfera;

c. mentre $\mathbf{\mathcal{E}}_1 (\equiv \mathbf{\mathcal{E}}_1^*)$ è un campo conservativo, $\mathbf{\mathcal{E}}_2$ non lo è perché $\mathbf{\mathcal{E}}_2'$ non è irrotazionale, v. Eq. (13). Però, essendo *solenoidale*, $\mathbf{\mathcal{E}}_2$ sostiene una densità netta di corrente data da

$$\boldsymbol{J}_{2} = \boldsymbol{\kappa}_{2}\boldsymbol{\xi}_{2} \equiv \boldsymbol{\kappa}_{2}(\boldsymbol{v} \times \boldsymbol{B}_{0} + \boldsymbol{\xi}_{2}^{*}).$$
(16)

Circa la questione dell'impossibilità, da parte di un campo irrotazionale, di sostenere un regime stazionario di corrente, si consultino [¹], [²], [³], [⁴], [⁵], [⁸], [¹⁰];

d. poiché J_2 è stazionaria, l'*Equazione di Continuità* del flusso della carica elettrica impone che una *densità di corrente stazionaria*, J_1 , persista anche *nella* sfera, sostenuta da \mathcal{E}_1 ,

$$\boldsymbol{J}_{1} = \boldsymbol{\kappa}_{1} \boldsymbol{\mathcal{E}}_{1}. \tag{17}$$

Pertanto, correnti parassite stazionarie di conduzione circolano tra la sfera e il fluido.

È ovvio che, se $\mathcal{E}'_{2,r}(a, \theta, \varphi) = 0$, non viene indotta alcuna densità di carica all'interfaccia tra i due mezzi né alcun campo elettrostatico ulteriore né alcuna corrente parassita tra la sfera e il fluido.

1.2 Essendo il campo B_0 *indipendente* dal tempo, la forma appropriata al problema della *Legge di Faraday-Maxwell* riguarda la sola componente *irrotazionale* del campo elettrico *totale* $\boldsymbol{\mathcal{E}}$, i.e., la componente *indotta* $\boldsymbol{\mathcal{E}}^*$. Come conseguenza della disuguaglianza (13), il termine elettrico *magneto-motore* deve essere escluso. Questa conclusione è in accordo stretto con il *Principio di Sovrapposizione* per i campi lineari. Quindi,

$$\nabla \times \mathbf{\mathcal{E}}^* = -\frac{\partial B_0}{\partial t} \equiv \mathbf{0}.$$
⁽¹⁸⁾

L'equazione (18) porta con sé le conseguenze seguenti:

a. la componente vettoriale *tangenziale* di \mathbf{E}^* attraverso la superficie della sfera è *continua*,

$$\mathcal{E}_{2,\parallel}^*(a,\theta,\varphi) = \mathcal{E}_{1,\parallel}^*(a,\theta,\varphi).$$
⁽¹⁹⁾

Poiché $\mathbf{\mathcal{E}}_1^* \in \mathbf{\mathcal{E}}_2^*$ sono derivabili da funzioni-potenziale che soddisfano la *stessa Equazione di Laplace*, l'Eq. (19) può essere sostituita dalla condizione più maneggevole (cf/c Eq. (14))

$$\boldsymbol{\Phi}_{2}^{*}(a,\theta,\varphi) = \boldsymbol{\Phi}_{1}^{*}(a,\theta,\varphi); \qquad (20)$$

b. si è visto che la densità totale di corrente è stazionaria ovunque perché tutti i campi elettrici sono *solenoidali* (quasi) ovunque. Pertanto, la componente vettoriale *normale* (i.e., *radiale*) di *J* è *continua* attraverso la superficie della sfera (v. [¹], [²], [³], [⁴], [⁵], [⁸], [¹⁰]),

$$J_{2,r}(a,\theta,\varphi) = J_{1,r}(a,\theta,\varphi),$$

o, in modo equivalente, essendo i mezzi ohmici (i.e., lineari),

$$\kappa_{2} \lim_{r \to a^{+}} \mathcal{E}_{2,r}(r,\theta,\varphi) = \kappa_{1} \lim_{r \to a^{-}} \mathcal{E}_{1,r}(r,\theta,\varphi).$$
(21)

La dipendenza dai campi elettrici *totali* è indicata, come pure la presenza di discontinuità di campo dovuta alle sorgenti;

c. infine, $\mathbf{\mathcal{E}}_2$ deve svanire a distanza *molto* grande dalla sfera, i.e., $\forall \{\theta, \phi\}$, deve aversi che

$$\lim_{r \to +\infty} (\boldsymbol{v} \times \boldsymbol{B}_0 + \boldsymbol{\mathcal{E}}_2^*) = \boldsymbol{0}.$$
⁽²²⁾

1.3 Per convenienza di calcolo ma senza pregiudizio di generalità del procedimento, il *sistema-s* può essere scelto in modo tale che B_0 giaccia nel piano $X \times Z$ (il farsene uno schema grafico non sarà inutile per una chiarificazione della 'geometria').

Così, si può scrivere

$$\boldsymbol{B}_0 \equiv B_{0,x} \hat{\boldsymbol{x}} + B_{0,z} \hat{\boldsymbol{z}} \,. \tag{23}$$

a. All'esterno della sfera, $r \in (a, +\infty)$, nella regione del fluido, risulta

$$\begin{split} \mathbf{\mathcal{E}}_{2}' &= \mathbf{v} \times \mathbf{B}_{0} = \left(-v_{0}\hat{z} + \frac{a^{3}v_{0}}{2} \frac{\hat{r}^{2}\cos\theta + \hat{\theta}\sin\theta}{r^{3}} \right) \times (B_{0,x}\hat{x} + B_{0,z}\hat{z}) \\ &= -v_{0}B_{0,x}\hat{y} + \frac{v_{0}a^{3}}{2r^{3}} (\hat{r}^{2}\cos\theta + \hat{\theta}\sin\theta) \times_{\downarrow} \\ &\downarrow \times (\hat{r}(B_{0,x}\sin\theta\cos\varphi + B_{0,z}\cos\theta) + \hat{\theta}(B_{0,x}\cos\theta\cos\varphi - B_{0,z}\sin\theta) - \hat{\varphi}B_{0,x}\sin\varphi) \\ &= -v_{0}B_{0,x}\hat{y} +_{\downarrow} \\ &\downarrow + \frac{v_{0}a^{3}}{2r^{3}} \left| \begin{array}{c} \hat{r} & \hat{\theta} & \hat{\varphi} \\ 2\cos\theta & \sin\theta & 0 \\ B_{0,x}\sin\theta\cos\varphi + B_{0,z}\cos\theta & B_{0,x}\cos\theta\cos\varphi - B_{0,z}\sin\theta & -B_{0,x}\sin\varphi \\ &= -v_{0}B_{0,x}(\hat{r}\sin\theta\sin\varphi + \hat{\theta}\cos\varphi + B_{0,z}\cos\theta - B_{0,x}\cos\theta\cos\varphi - B_{0,z}\sin\theta & -B_{0,x}\sin\varphi \\ &= -v_{0}B_{0,x}(\hat{r}\sin\theta\sin\varphi + \hat{\theta}\cos\varphi\sin\varphi + \hat{\varphi}\cos\varphi) -_{\downarrow} \\ &\downarrow + \hat{\varphi}(B_{0,x}(1 - 3(\cos\theta)^{2})\cos\varphi + 3B_{0,z}\cos\theta\sin\varphi)) \\ &= -\frac{v_{0}}{2r^{3}}(\hat{r}B_{0,x}(2r^{3} + a^{3})\sin\theta\sin\varphi + \hat{\theta} 2B_{0,x}(r^{3} - a^{3})\cos\theta\sin\varphi +_{\downarrow} \\ &\downarrow + \hat{\varphi}(B_{0,x}(2r^{3} + a^{3}(1 - 3(\cos\theta)^{2}))\cos\varphi + 3a^{3}B_{0,z}\cos\theta\sin\varphi)) \end{array}$$
(24)
$$&= \mathbf{E}_{2}'(r, \theta, \varphi), \end{split}$$

in rappresentazione sferica. La componente scalare *radiale* di $\mathbf{\mathcal{E}}_{2}'$ alla superficie della sfera si legge immediatamente dall'Eq. (24):

$$\mathcal{E}_{2,r}'(a,\theta,\varphi) = -\frac{3}{2}v_0 B_{0,x}\sin\theta\sin\varphi.$$
⁽²⁵⁾

Allora, se B_0 non è equiverso\contro-verso a $v_{\infty} \equiv -v_0 \hat{z} \Rightarrow \sin\theta \neq 0$, una distribuzione di carica elettrica *statica* viene indotta sulla superficie della sfera dal campo \mathbf{E}'_2 . Al fine di obbedire alla condizione asintotica *di frontiera* (22), è naturale assumere che sia \mathbf{E}'_2

che \mathbf{E}_{2}^{*} svaniscano a *grande* distanza dalla sfera. Però, dall'Eq. (24), si osserva che

$$\lim_{r \to +\infty} \mathbf{\mathcal{E}}_{2}'(r, \theta, \varphi) = -v_{0}B_{0,x}(\hat{\mathbf{r}}\sin\theta\sin\varphi + \hat{\theta}\cos\theta\sin\varphi + \hat{\varphi}\cos\varphi) \equiv -v_{0}B_{0,x}\hat{\mathbf{y}}$$
$$\equiv -v_{0}\hat{\mathbf{z}} \times (B_{0,x}\hat{\mathbf{x}} + B_{0,z}\hat{\mathbf{z}}) \equiv v_{\infty} \times B_{0}.$$
(26)

Così, necessariamente, richiedendo la presenza del contro-addendo *soppressore* $+ v_0 B_{0,x} \hat{y}$ nell'espressione di \boldsymbol{E}_2^* , è sufficiente definire

$$\boldsymbol{\mathcal{E}}_{2}^{*} \equiv -\boldsymbol{\nabla}\boldsymbol{\Phi}_{2}^{*} := -\boldsymbol{\nabla}(\boldsymbol{\Psi}_{2}^{*} - v_{0}B_{0,x}y) \equiv -\boldsymbol{\nabla}(\boldsymbol{\Psi}_{2}^{*} - v_{0}B_{0,x}r\sin\theta\sin\varphi), \qquad (27)$$

dove è *imposto* alla funzione Ψ_2^* di soddisfare l'*Equazione di Laplace*, i.e., di costituire una

funzione potenziale. È evidente che Φ_2^* è soluzione *regolare* (*'well-behaved'*) dell'*Equazione di Laplace*, i.e., almeno, che $\Phi_2^*(\mathbf{r}) \in \mathcal{C}(\mathbb{R}) \land \nabla \Phi_2^*(\mathbf{r}) \neq \mathbf{0}$ in \mathbb{R}^3 (cf/c [¹⁷], P. 11);

b. all'*interno* della sfera, $r \in [0, a)$, deve essere

 $\mathbf{\mathcal{E}}_{1} \equiv \mathbf{\mathcal{E}}_{1}^{*}$, un campo *conservativo*, v. Eq. (15). Tenendo conto della *condizione di frontiera* (20) e della definizione (27), la scelta più ovvia della forma di $\mathbf{\mathcal{E}}_{1}^{*}$ è

$$\boldsymbol{\mathcal{E}}_{1}^{*} \equiv -\boldsymbol{\nabla}\boldsymbol{\Phi}_{1}^{*} \coloneqq -\boldsymbol{\nabla}(\boldsymbol{\Psi}_{1}^{*} - \boldsymbol{v}_{0}\boldsymbol{B}_{0,x}\boldsymbol{y}) \equiv -\boldsymbol{\nabla}(\boldsymbol{\Psi}_{1}^{*} - \boldsymbol{v}_{0}\boldsymbol{B}_{0,x}\boldsymbol{r}\sin\theta\sin\varphi), \qquad (28)$$

dove si richiede che anche Ψ_1^* sia una funzione-potenziale *regolare*.

La costruzione delle espressioni $\Psi_1^*(\mathbf{r}) \in \Psi_2^*(\mathbf{r})$ dei potenziali appropriati al problema segue il metodo classico di sviluppo in serie di *auto-funzioni ortogonali*, ricavando i coefficienti non-nulli dell'espansione dalle *condizioni di frontiera* pertinenti (v. [¹], [²], [³], [⁴], [⁶], [¹³], [¹⁵]).

Nell'omogeneità sferica del sistema, il verso \hat{z} di v_{∞} , la velocità *indisturbata* del fluido a grande distanza dalla sfera conduttrice, si caratterizza come privilegiata. In tale circostanza, la soluzione generale dell'*Equazione di Laplace* va specializzata al problema sia obbedendo alle *condizioni di frontiera* sia evitando possibili *singolarità*.

Il problema fisico in discussione è classico, *non* quantistico. Pertanto, mancando la necessità di trattare quantità complesse, è preferibile iniziare dall'Eq. (2) nell'APPENDICE, invece che dalla successiva Eq. (3). L'Eq. (2) indicata,

$$\boldsymbol{\Phi}(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \left(\boldsymbol{\alpha}_{l} r^{l} + \frac{\boldsymbol{\beta}_{l}}{r^{l+1}} \right) (P_{l,m}(\cos\theta)) (C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi)),$$

è valida per *tutte* le direzioni e va adattata alla presenza dei conduttori ([¹], [²], [³], [⁴], [⁵], [⁷], [⁹]). Con $r \in [0, a)$, all'*interno* della sfera, e con $r \in (a, +\infty)$, all'*esterno* della sfera, $\Phi(r, \theta, \varphi)$ risulta singolare, rispettivamente, in r = 0 e per $r \to +\infty$. Quindi, $\forall l$, bisogna imporre $\beta_l \equiv 0$ nella soluzione *interna* $\Phi(r, \theta, \varphi) \mapsto \Psi_1^*(r, \theta, \varphi)$ mentre deve essere $\alpha_l \equiv 0$ nella soluzione *esterna* $\Phi(r, \theta, \varphi) \mapsto \Psi_2^*(r, \theta, \varphi)$.

Le forme parametriche preliminari dei potenziali sono, allora,

$$\begin{split} \Psi_1^*(r,\theta,\varphi) &= \sum_{l=0}^{+\infty} \sum_{m=0}^l \alpha_l r^l (P_{l,m}(\cos\theta)) (C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi)), \\ \Psi_2^*(r,\theta,\varphi) &= \sum_{l=0}^{+\infty} \sum_{m=0}^l \frac{\beta_l}{r^{l+1}} (P_{l,m}(\cos\theta)) (C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi)). \end{split}$$

Dalla *condizione di frontiera* (20), segue che $\alpha_l a^l = \beta_l / a^{l+1}$, i.e., che

$$\boldsymbol{\beta}_l = \boldsymbol{\alpha}_l a^{2l+1}. \tag{29}$$

Quindi, definita la Funzione Armonica Sferica generale (non orto-normalizzata),

$$\Upsilon_{lm}(\theta, \varphi) \coloneqq (P_{l,m}(\cos\theta))(C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi)), \qquad (30)$$

si scrivono le espressioni dei potenziali, interno ed esterno, rispettivamente,

$$\Psi_1^*(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_l r^l \Upsilon_{l,m}(\theta,\varphi), \qquad (31)$$

$$\Psi_{2}^{*}(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_{l} \frac{a^{2l+1}}{r^{l+1}} \Upsilon_{l,m}(\theta,\varphi).$$
(32)

A questo punto, tenendo presenti le Eq.i (15), (28), (26) e (27), si specificano le *condizioni di frontiera* (21) in coordinate *sferiche*:

$$\kappa_{2} \left(-\frac{3}{2} v_{0} B_{0,x} \sin \theta \sin \varphi - \frac{\partial}{\partial r} (\Psi_{2}^{*} - v_{0} B_{0,x} r \sin \theta \sin \varphi) \right)_{r=a} = \kappa_{1} \left(-\frac{\partial}{\partial r} (\Psi_{1}^{*} - v_{0} B_{0,x} r \sin \theta \sin \varphi) \right)_{r=a}.$$
(33)

Sostituendo le espressioni (31) e (32) dei potenziali nell'Eq. (33), si ottiene

$$-\frac{1}{2}\kappa_{2}v_{0}B_{0,x}\sin\theta\sin\varphi - \kappa_{2}\sum_{l=0}^{+\infty}\sum_{m=0}^{l}\alpha_{l}a^{2l+1}\left(-\frac{l+1}{r^{l+2}}\right)_{r=a}\Upsilon_{l,m}(\theta,\varphi) =$$
$$\downarrow = -\kappa_{1}\sum_{l=0}^{+\infty}\sum_{m=0}^{l}\alpha_{l}(lr^{l-1})\Big|_{r=a}\Upsilon_{l,m}(\theta,\varphi) - \kappa_{1}v_{0}B_{0,x}\sin\theta\sin\varphi.$$

Poi, sostituendo l'espressione (30) di $\Upsilon_{lm}(\theta, \varphi)$ e semplificando, si arriva all'uguaglianza

$$(1/2) v_0 B_{0,x} (2\kappa_1 + \kappa_2) \sin\theta \sin\varphi = \\ = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} (l\kappa_1 + (l+1)\kappa_2) \alpha_l a^{l-1} P_{l,m} (\cos\theta) (C_{l,m} \cos(m\varphi) + S_{l,m} \sin(m\varphi)).$$
(34)

Ora, consultando, e.g., [¹³], P. 724, o costruendo (v. APPENDICE, Eq.i (1.1) e (1.1.2)) una tabella di *Funzioni di Legendre Associate*, segue, dal *Principio di Identità delle Serie*, che

$$C_{l,m} \equiv 0 \quad \forall l \text{ e, quindi, anche } \forall m;$$

$$\gamma_{l,m} \coloneqq \alpha_l S_{l,m} \equiv 0 \quad \forall \{l,m\} \neq \{1,1\}.$$

Così, poiché solo $\gamma_{11} \equiv \alpha_1 S_{11} \neq 0$, l'Eq. (34) si riduce alla forma

$$(1/2) v_0 B_{0,x} (2\kappa_1 + \kappa_2) \sin\theta \sin\varphi = (\kappa_1 + 2\kappa_2) \gamma_{1,1} \sin\theta \sin\varphi,$$

dalla quale, risulta

$$\gamma_{1,1} = v_0 B_{0,x} \frac{2\kappa_1 + \kappa_2}{2(\kappa_1 + 2\kappa_2)} .$$
(35)

A loro volta, i potenziali (31) e (32) assumono le forme esplicite

$$\Psi_{1}^{*}(r,\theta,\varphi) = \gamma_{1,1}r P_{1,1}(\cos\theta)\sin\varphi$$
$$= v_{0}B_{0,x}\frac{2\kappa_{1}+\kappa_{2}}{2(\kappa_{1}+2\kappa_{2})}r\sin\theta\sin\varphi \equiv v_{0}B_{0,x}\frac{2\kappa_{1}+\kappa_{2}}{2(\kappa_{1}+2\kappa_{2})}y, \qquad (36)$$

$$\Psi_2^*(r,\theta,\varphi) = \gamma_{11} \frac{a^3}{r^2} P_{1,1}(\cos\theta) \sin\varphi \equiv v_0 B_{0,x} a^3 \frac{2\kappa_1 + \kappa_2}{2(\kappa_1 + 2\kappa_2)} \frac{\sin\theta\sin\varphi}{r^2} .$$
(37)

Dalle Eq.i (28), (36), (27) e (37), si calcolano prontamente le espressioni dei campi elettrostatici

$$\boldsymbol{\mathcal{E}}_{1}^{*} \equiv -\boldsymbol{\nabla}\boldsymbol{\Phi}_{1}^{*} = \frac{3}{2} v_{0} B_{0,x} \frac{\kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \hat{\boldsymbol{y}}$$
$$= \frac{3}{2} v_{0} B_{0,x} \frac{\kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \left(\hat{\boldsymbol{r}} \sin\theta \sin\varphi + \hat{\theta}\cos\theta \sin\varphi + \hat{\varphi}\cos\varphi \right), \qquad (38)$$

un campo *uniforme*, *ortogonale* sia a B_0 che a v_{∞} , e

$$\boldsymbol{\mathcal{E}}_{2}^{*} \equiv -\boldsymbol{\nabla}\boldsymbol{\Phi}_{2}^{*} = v_{0}B_{0,x} \left(\hat{\boldsymbol{r}} \left(1 + \frac{2\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \frac{a^{3}}{r^{3}} \right) \sin\theta \sin\varphi + \boldsymbol{\mathcal{A}} \right)$$

$$\downarrow + \left(1 - \frac{2\kappa_{1} + \kappa_{2}}{2(\kappa_{1} + 2\kappa_{2})} \frac{a^{3}}{r^{3}} \right) (\hat{\boldsymbol{\theta}} \cos\theta \sin\varphi + \hat{\boldsymbol{\varphi}} \cos\varphi) \right). \quad (39)$$

Infine, le Eq. (15), (38), (24) e (39) consentono di determinare, ovunque, il campo elettrico totale:

$$\boldsymbol{\mathcal{E}} \equiv \boldsymbol{\mathcal{E}}_{1} \equiv \boldsymbol{\mathcal{E}}_{1}^{*} = \frac{3}{2} v_{0} B_{0,x} \frac{\kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \hat{\boldsymbol{\mathcal{y}}}, \qquad (40)$$

(ortogonale sia a B_0 che a v_{∞} e uniforme), per $r \in [0, a)$, e

$$\boldsymbol{\mathcal{E}} = \boldsymbol{\mathcal{E}}_{2} = \boldsymbol{\mathcal{E}}_{2}' + \boldsymbol{\mathcal{E}}_{2}^{*}$$

$$= \frac{3v_{0}}{2(\kappa_{1} + 2\kappa_{2})} \frac{a^{3}}{r^{3}} (\hat{\boldsymbol{r}} B_{0,x} \kappa_{1} \sin\theta \sin\varphi + \hat{\boldsymbol{\theta}} B_{0,x} \kappa_{2} \cos\theta \sin\varphi + \boldsymbol{\zeta} + \hat{\boldsymbol{\varphi}} (B_{0,x} ((\kappa_{1} + 2\kappa_{2})(\cos\theta)^{2} - (\kappa_{1} + \kappa_{2}))\cos\varphi - B_{0,z} (\kappa_{1} + 2\kappa_{2})\cos\theta \sin\theta)), \quad (41)$$

per $r \in (a, +\infty)$, nella regione del fluido.

Forme specifiche per $\mathbf{\mathcal{E}}_1$ ed $\mathbf{\mathcal{E}}_2$, come quelle corrispondenti a \mathbf{B}_0 equiverso\contro-verso a $\hat{\mathbf{x}}$ (i.e., $B_{0,z} \equiv 0$)) o a $\hat{\mathbf{z}}$ (i.e., $B_{0,x} \equiv 0$) possono essere estratte facilmente dalle Eq.i (40) e (41).

1.4 La *Legge di Gauss-Maxwell* è rappresentata da un'equazione differenziale *deterministica* che connette una distribuzione di carica in un certo volume al campo elettrico che essa produce.

Pertanto, campi elettrici *magneto-motori* sono campi di *altro* tipo, essendo generati diversamente e governati da una legge differente, quella *di Faraday-Maxwell*.

Qui, sono implicati *solo* i campi $\mathbf{\mathcal{E}}_1^*$ ed $\mathbf{\mathcal{E}}_2^*$ che, per il *Principio di Sovrapposizione* dei campi *lineari*, sono *separabili* dai campi elettrici di origine non-statica.

Nel limite di una distribuzione di carica σ sull'interfaccia tra due conduttori, la *Legge di Gauss-Maxwell* si riduce alla *condizione di frontiera* sulla componente *normale* del campo elettrico in corrispondenza di tale interfaccia.

Così, dalle Eq. (38) e (39), si ottiene

$$\sigma(\theta, \varphi) = \varepsilon_0 \left(\lim_{r \to a^+} \mathcal{E}^*_{2,r}(r, \theta, \varphi) - \lim_{r \to a^-} \mathcal{E}^*_{2,r}(r, \theta, \varphi) \right)$$
$$= \frac{3}{2} \varepsilon_0 v_0 B_{0,x} \frac{2\kappa_1 + \kappa_2}{\kappa_1 + 2\kappa_2} \sin\theta \sin\varphi \,. \tag{42}$$

Si noti che, se B_0 è *azimutalmente simmetrico* ($\Rightarrow sin \theta \equiv 0$), non è indotta alcuna distribuzione

non-uniforme della carica Q_1 sulla superficie della sfera.

Inoltre, come affermato nella Parte I.1, P. 4, la sfera rimane elettricamente neutra,

$$Q_{1} = \int_{V_{1}} \sigma(\theta', \varphi') dv' = \int_{0}^{a} r'^{2} \delta(a - r') dr' \int_{0}^{\pi} \sin\theta' d\theta' \int_{0}^{2\pi} \sigma(\theta', \varphi') d\varphi'$$
$$= \frac{3}{2} \varepsilon_{0} v_{0} B_{0,x} a^{2} \frac{2\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \int_{0}^{\pi} (\sin\theta)^{2} d\theta \int_{0}^{2\pi} \sin\varphi d\varphi \equiv 0,$$

poiché la parte azimutale dell'integrale è nulla.

I.5 La potenza termo-elettrica dissipata (v. [²], [³], [⁴], [⁵], [⁶], [⁷]) *nella sfera*, corrispondente al *riscaldamento Joule* della sfera, è data da

$$\mathbf{P}_{1} \equiv \int_{V_{1}} \kappa_{1} \|\boldsymbol{\mathcal{E}}_{1}\|^{2} dv_{1} = \kappa_{1} \left(\frac{3}{2} v_{0} B_{0,x} \frac{\kappa_{2}}{\kappa_{1} + 2\kappa_{2}}\right)^{2} \left(\frac{4}{3} \pi a^{3}\right)$$
$$= 3\pi v_{0}^{2} B_{0,x}^{2} a^{3} \frac{\kappa_{1} \kappa_{2}^{2}}{(\kappa_{1} + 2\kappa_{2})^{2}} .$$
(43)

Circa il fluido, tenendo a mente che il prodotto scalare è *invariante* rispetto alla scelta del sistema di coordinate *ortogonali* di rappresentazione, si può scrivere

$$\|\boldsymbol{\mathcal{E}}_{2}\|^{2} \equiv \boldsymbol{\mathcal{E}}_{2} \cdot \boldsymbol{\mathcal{E}}_{2} = \boldsymbol{\mathcal{E}}_{2,r}^{2} + \boldsymbol{\mathcal{E}}_{2,\theta}^{2} + \boldsymbol{\mathcal{E}}_{2,\varphi}^{2}.$$

I quadrati delle componenti scalari sferiche di $\boldsymbol{\mathcal{E}}_2$ si calcolano dall'Eq. (41):

Pertanto, la potenza dissipata come calore-per-unità-di-tempo *all'interno del fluido* assume la forma generale

$$\mathsf{P}_{2} \equiv \int_{V_{2}} \kappa_{2} \|\boldsymbol{\mathcal{E}}_{2}\|^{2} dr_{2}^{3} = \kappa_{2} \int_{V_{2}} (\mathcal{\mathcal{E}}_{2,r}^{2} + \mathcal{\mathcal{E}}_{2,\theta}^{2} + \mathcal{\mathcal{E}}_{2,\varphi}^{2}) dr_{2}^{3}.$$

Un controllo dei termini integrandi evidenzia che il contributo proveniente dal secondo termine in $\mathcal{E}_{2,\varphi}^2$, quello *sovragraffato* contenente il prodotto *misto* $B_{0,x}B_{0,z}$, è nullo, annullandosi *entrambi* gli integrali angolari. Segue che

Le θ -integrazioni si eseguono facilmente mediante la trasformazione $u := \cos \theta$, corrispondente al cambiamento $\int_0^{\pi} (\sin \theta \, d\theta) \mapsto \int_{-1}^1 (du)$ dell'elemento integrale. Il risultato finale è

$$\mathbf{P}_{2} = \frac{\pi}{5} v_{0}^{2} a^{3} \kappa_{2} \left(3B_{0,x}^{2} \frac{3\kappa_{1}^{2} + 2\kappa_{1}\kappa_{2} + 2\kappa_{2}^{2}}{(\kappa_{1} + 2\kappa_{2})^{2}} + 2B_{0,z}^{2} \right).$$
(44)

Infine, la perdita totale di potenza termoelettrica nel sistema sfera-fluido ammonta a

$$\mathbf{P} = \mathbf{P}_{1} + \mathbf{P}_{2} = \frac{\pi}{5} v_{0}^{2} a^{3} \kappa_{2} \left(3B_{0,x}^{2} \frac{3\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} + 2B_{0,z}^{2} \right).$$
(45)

Rispetto all'*f*-sistema di riferimento, quello in cui il fluido appare *fermo*, l'Eq. (45) esprime la quantità totale di calore-per-unità-di-tempo dissipata dalla sfera *in tutto* lo spazio, sia in sé stessa che nel fluido, a causa di una forza netta risultante, F_R , che si oppone al suo moto attraverso il fluido. Più avanti, nella soluzione I.7, si argomenterà brevemente circa la natura di tale forza, la cui insorgenza è dovuta all'interazione *magneto-idrodinamica* tra il campo esterno B_0 di induzione magnetica e il sistema sfera-fluido.

Poiché P deve risultare equivalente alla potenza meccanica *persa* dalla sfera vs. lo spazio *intero*, si ha, nell' f-sistema,

$$\mathbf{P} = \boldsymbol{F}_{R} \cdot \boldsymbol{v}_{0} = (-F_{R} \hat{\boldsymbol{z}}) \cdot \boldsymbol{v}_{0} \hat{\boldsymbol{z}},$$

avendo scelto che sia, in ogni caso, $F_R v_0 > 0$ (concordanza dei segni).

Pertanto, dall'Eq. (45), si conclude che

$$\boldsymbol{F}_{R} = -\frac{\pi}{5} v_{0} a^{3} \kappa_{2} \left(3B_{0,x}^{2} \frac{3\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} + 2B_{0,z}^{2} \right) \hat{\boldsymbol{z}} \,. \tag{46}$$

I.6 La potenza termica dissipata all'interno di un volume infinitesimo della sfera si esprime come

 $d\mathbf{P}_{1} \equiv \kappa_{1} \|\boldsymbol{\mathcal{E}}_{1}\|^{2} dr_{1}^{3}$ = $d(dW_{1}/dt)$, il lavoro *non-conservativo* eseguito per-unità-di-tempo dalla forza $(dQ_{1})(\boldsymbol{J}_{1}/\kappa_{1}) \equiv (dQ_{1})\boldsymbol{\mathcal{E}}_{1}$ sulla carica contenuta nel volume dr_{1}^{3} , $\equiv d(d\mathbf{Q}_{1}/dt)$, il differenziale del *tasso* di calore equivalente, $\dot{\mathbf{Q}}_{1}$, dissipato in dv_{1} per *effetto Joule*.

Allora, mantenendo la temperatura $T \equiv T(\mathbf{r})$ stazionaria e indicando con S_1 la funzione entropia

(sufficientemente regolare) della sfera, risulta

$$\frac{\kappa_1 \|\mathbf{\mathcal{E}}_1\|^2}{T} dv_1 = \frac{d(d\mathbf{Q}_1/T)}{dt} \equiv \frac{d}{dt} (d\mathcal{S}_1), \quad \text{il tasso di variazione di entropia nel volume } dr_1^3,$$
$$\equiv d(d\mathcal{S}_1/dt), \qquad \qquad \text{la variazione del tasso di entropia nel volume } dr_1^3.$$

Integrando su tutto il volume della sfera e avvalendosi dell'Eq. (38) in forma cartesiana, si ottiene

$$\frac{dS_1}{dt} = \int_{V_1} \frac{\kappa_1 \|\boldsymbol{\mathcal{E}}_1\|^2}{T} dr_1^3 = \kappa_1 \left(\frac{3}{2} v_0 B_{0,x} \frac{\kappa_2}{\kappa_1 + 2\kappa_2}\right)^2 \int_{V_1} \frac{dr_1^3}{T(\boldsymbol{r})} dr_1^3$$

L'integrazione ulteriore rispetto al tempo dà

$$\Delta S_{1} = \frac{9}{4} v_{0}^{2} B_{0,x}^{2} \frac{\kappa_{1} \kappa_{2}^{2}}{(\kappa_{1} + 2\kappa_{2})^{2}} \Delta t \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta \, d\theta \int_{0}^{a} \frac{r^{2}}{T(r,\theta,\varphi)} \, dr \,. \tag{47}$$

Poiché un processo iso-entropico equivale a un processo adiabatico *qualsiasi* che avvenga tra gli *stessi* stati terminali di equilibrio termodinamico, in tali condizioni, il moto della sfera è *adiabatico* se $\Delta S_1 \equiv 0$. Dall'Eq. (47), questo implica che sia $B_{0,x} \equiv 0$. In altri termini, il moto adiabatico (tra stati di equilibrio termodinamico) si realizza sse $B_0 e v_{\infty}$ sono *paralleli*.

La conseguenza più immediata è, allora, che la variazione assoluta di entropia è *massima* quando B_0 è totalmente *trasverso* alla direzione del moto della sfera, i.e., quando $B_{0,z} \equiv 0$.

I.7 L's-osservatore vede la sfera subire una spinta, F', longitudinale (i.e., parallela a v_{∞}).

Ovviamente, in virtù del *Principio di Invarianza Galileiana*, $F' \in F_R$ hanno rappresentazioni *identiche* e, quindi,

$$\mathbf{F'} \equiv \mathbf{F}_{R} = -\frac{\pi}{5} a^{3} v_{0} \kappa_{2} \left(3B_{0,x}^{2} \frac{3\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} + 2B_{0,z}^{2} \right) \hat{\mathbf{z}}.$$
 (48)

Ora, è necessario identificare la *forza di Lorentz* sulla sfera, generata dall'accoppiamento vettoriale tra la densità di corrente parassita *interna* e il campo di induzione magnetica applicato al sistema:

$$\boldsymbol{F}_{L} = \int_{V_{1}} \boldsymbol{J}_{1} \times \boldsymbol{B}_{0} dr_{1}^{3} \equiv \kappa_{1} \int_{V_{1}} \boldsymbol{\xi}_{1} \times \boldsymbol{B}_{0} dr_{1}^{3} = 2\pi a^{3} \frac{\kappa_{1} \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} v_{0} (B_{0,x} B_{0,z} \hat{\boldsymbol{x}} - B_{0,x}^{2} \hat{\boldsymbol{z}}).$$
(49)

La *Forza di Lorentz* risulta scomponibile in una parte *longitudinale*, $\propto -B_{0,x}^2 \hat{x}$, che *contribuisce* alla spinta longitudinale totale, Eq. (48), e in una parte trasversa, $\propto B_{0,x}B_{0,z}\hat{x}$, che dà una misura della tendenza di v_{∞} a orientarsi parallelamente a B_0 (per 'l' f - osservatore, è la direzione della velocità della sfera che tende ad allinearsi con B_0).

Nel caso particolare in cui B_0 è parallelo alla direzione del moto del fluido, $F_L = 0$, così che

$$\boldsymbol{F}' = -\frac{2}{5}\pi a^3 v_0 \|\boldsymbol{B}_0\|^2 \kappa_2 \hat{\boldsymbol{z}} \equiv \boldsymbol{F}'_{\parallel}$$
(50)

(il pedice '||' indica la condizione di parallelismo tra $B_0 e v_{\infty}$).

Poiché la simmetria azimutale completa del flusso del fluido preclude la possibilità di qualsiasi azione *meccanica trasversa* esercitata dal fluido sulla sfera, l'Eq. (50) descrive la forza *totale* subita dalla sfera quando $B_{0,x} \equiv 0$. In questo caso, F'_{\parallel} è dovuto unicamente al moto relativo del fluido (regime idrodinamico puro).

Invece, quando $\boldsymbol{B}_0 \perp \boldsymbol{v}_{\infty}$, allora, \boldsymbol{F}_L è di origine magnetica trasversa e, quindi,

$$\mathbf{F}' = -\frac{3}{5}\pi a^{3}v_{0} \|\mathbf{B}_{0}\|^{2} \frac{\kappa_{2}(3\kappa_{1}+\kappa_{2})}{\kappa_{1}+2\kappa_{2}} \hat{\mathbf{z}} \equiv \mathbf{F}'_{\perp}.$$
(51)

Anche in questo caso, la simmetria azimutale completa del flusso del fluido impedisce qualsiasi effetto *meccanico trasverso* sulla sfera, il che porta alla conclusione che l'Eq. (51) rappresenta la forza *totale* sulla sfera nel caso in cui $B_{0,z} \equiv 0$. Però, rispetto a F'_{\parallel} , c'è una differenza: F'_{\perp} include anche il contributo *lorentziano*, ridotto a

$$\boldsymbol{F}_{L,z} \equiv -2\pi a^{3} v_{0} B_{0,x}^{2} \frac{\kappa_{1} \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} \hat{\boldsymbol{z}}.$$
(51.1)

Segue immediatamente $(B_{0,z} \equiv 0)$ che

$$F'_{\perp} \equiv F_{L,z} - \frac{2}{5} \pi a^{3} v_{0} ||B_{0}||^{2} \frac{\kappa_{2}(\kappa_{1} + \kappa_{2})}{\kappa_{1} + 2\kappa_{2}} \hat{z}.$$
(51.2)

Con qualsiasi altra direzione di B_0 , insorgono *effetti meccanici trasversi*; a quella *lorentziana* pura, è da attendersi l'azione di altre forze generate dalla *rottura di simmetria longitudinale* nella dinamica del flusso.

Un'espressione generale della *forza totale* sulla sfera, F_T , può essere dedotta dalle sue due forme specializzate (50) e (51), sfruttando il fatto che B_0 e v_{∞} sono vettori aventi *norma uniforme*.

Mantenendo v_{∞} fisso, si può ruotare B_0 nel piano rappresentativo $X \times Z$ tra le due orientazioni estreme, da quella parallela a quella ortogonale all'asse Z. In tal modo, F_T evolve tra le forme (50) e (51) con continuità.

Sostituzioni ovvie permettono di riscrivere le Eq. (50) e (51), rispettivamente,

$$F'_{\parallel} = \frac{2}{5}\pi a^{3}\kappa_{2}(\boldsymbol{v}_{\infty} \cdot \boldsymbol{B}_{0})\boldsymbol{B}_{0} \equiv \boldsymbol{F}_{T,\parallel},$$

$$F'_{\perp} = -\frac{3}{5}\pi a^{3}\frac{\kappa_{2}(3\kappa_{1} + \kappa_{2})}{\kappa_{1} + 2\kappa_{2}}\boldsymbol{B}_{0} \times (\boldsymbol{B}_{0} \times \boldsymbol{v}_{\infty})$$

$$= -\frac{3}{5}\pi a^{3}\frac{\kappa_{2}(3\kappa_{1} + \kappa_{2})}{\kappa_{1} + 2\kappa_{2}}((\boldsymbol{v}_{\infty} \cdot \boldsymbol{B}_{0})\boldsymbol{B}_{0} - \|\boldsymbol{B}_{0}\|^{2}\boldsymbol{v}_{\infty}) \equiv \boldsymbol{F}_{T,\perp},$$
(52)
(52)

Poiché la variabilità *continua* dell'angolo $\ll (v_{\infty}, B_0)$ determina una generalità sufficiente al vettore F_T , di modulo *uniforme*, è corretto costruire F_T formalmente *sovrapponendo* le espressioni estreme (52) e (53). Risulta

$$\boldsymbol{F}_{T} = -\frac{\pi}{5} a^{3} \frac{\boldsymbol{\kappa}_{2}(7\boldsymbol{\kappa}_{1} - \boldsymbol{\kappa}_{2})}{\boldsymbol{\kappa}_{1} + 2\boldsymbol{\kappa}_{2}} (\boldsymbol{v}_{\infty} \cdot \boldsymbol{B}_{0}) \boldsymbol{B}_{0} + 3\frac{\pi}{5} a^{3} \frac{\boldsymbol{\kappa}_{2}(3\boldsymbol{\kappa}_{1} + \boldsymbol{\kappa}_{2})}{\boldsymbol{\kappa}_{1} + 2\boldsymbol{\kappa}_{2}} \|\boldsymbol{B}_{0}\|^{2} \boldsymbol{v}_{\infty}$$
(54)

$$\equiv c_1 \boldsymbol{B}_0 + c_2 \boldsymbol{v}_{\infty},$$

combinazione lineare (prevedibile) dei campi (uniformi) $\boldsymbol{B}_0 \in \boldsymbol{v}_{\infty}$.

Le Eq. (50) e (51) vengono dall'Eq. (54), sostituendovi $v_{\infty} \equiv -v_0 \hat{z}$ e $\langle v_{\infty}, B_0 \rangle \equiv 0, \pi, \pm \pi/2$. La verifica è elementare.

Inoltre, mediante la definizione operativa $B_0 := B_{0,x} \hat{x} + B_{0,z} \hat{z}$, l'Eq. (54) diventa

$$\boldsymbol{F}_{T} = \frac{\pi}{5} a^{3} \frac{\kappa_{2}(7\kappa_{1} - \kappa_{2})}{\kappa_{1} + 2\kappa_{2}} v_{0} B_{0,x} B_{0,z} \hat{\boldsymbol{x}} - \frac{\pi}{5} a^{3} v_{0} \kappa_{2} \left(3B_{0,x}^{2} \frac{3\kappa_{1} + \kappa_{2}}{\kappa_{1} + 2\kappa_{2}} + 2B_{0,z}^{2} \right) \hat{\boldsymbol{z}}.$$
(54.1)

L'Eq. (54.1) vale vs. sia l'*s*-osservatore sia l'*f*-osservatore; la spinta longitudinale (48) sulla sfera appare in modo esplicito.

Il confronto tra $F_T \in F_L$ evidenzia la presenza di una forza puramente *meccanica*, F_M , di natura *idrodinamica*, agente sulla sfera. Se ne ottengono facilmente le espressioni seguenti:

$$\mathbf{F}_{M} = \mathbf{F}_{T} - \mathbf{F}_{L}$$

$$= -\frac{\pi}{5}a^{3}\frac{\kappa_{2}(3\kappa_{1} + \kappa_{2})}{\kappa_{1} + 2\kappa_{2}}v_{0}B_{0,x}B_{0,z}\hat{\mathbf{x}} + \frac{\pi}{5}a^{3}v_{0}\kappa_{2}\left(B_{0,x}^{2}\frac{\kappa_{1} - 3\kappa_{2}}{\kappa_{1} + 2\kappa_{2}} - 2B_{0,z}^{2}\right)\hat{\mathbf{z}}, \quad (55.1)$$

$$\equiv \frac{\pi}{5}a^{3}\frac{\kappa_{2}}{\kappa_{1} + 2\kappa_{2}}\left((3\kappa_{1} + \kappa_{2})(v_{\infty} \cdot B_{0})B_{0} - \frac{\kappa_{1} - 3\kappa_{2}}{v_{0}^{2}}((v_{\infty} \cdot B_{0})^{2} + (v_{\infty} \times B_{0})^{2})v_{\infty}\right).$$

$$\downarrow (55.2)$$

Fig. 2 - Simulazione di sovrapposizione di fluttuazioni TEM 8-\16-polari pure in un plasma tenue (plasma dance 2).

II. Moto rotazionale uniforme in regime di flusso stazionario

Sia ω_0 la velocità angolare *uniforme* nel fluido della sfera intorno a un suo diametro.

- II.1 Si discutano la natura e le caratteristiche del *campo elettrico* e la *densità di corrente* corrispondente indotti *ovunque*, sia all'interno che all'esterno della sfera;
- II.2 si determinino le *condizioni di frontiera* sufficienti compatibili con il problema;
- II.3 si ottenga ovunque un'espressione del campo elettrico totale;
- II.4 si calcoli la densità di carica elettrica indotta sulla superficie della sfera;
- II.5 si calcoli la *potenza termoelettrica* totale dissipata (effetto Joule), causata dalle correnti parassite indotte che circolano attraverso l'intero sistema sfera-fluido. Poi, si determini il *momento di forza resistente* netto, τ_R , subito dalla sfera nel fluido;
- II.6 si esprima la variazione di *entropia* della sfera, alla temperatura *radiale* stazionaria T(r) durante un intervallo di tempo Δt , tra stati terminali di equilibrio termodinamico, discutendo le condizioni magnetiche sufficienti per il suo moto *adiabatico* nel fluido;
- **II.7** si calcoli il *momento di forza totale* sulla sfera, separandone le componenti *resistente* e *trasversa*.

Soluzione

Si assuma, come riferimento, l'f-sistema (solidale con il fluido) fissando l'origine nel centro della sfera. L'f-osservatore, che vede la sfera ruotare intorno all'asse Z, descriverà

$$\boldsymbol{\omega}_0 \equiv \boldsymbol{\omega}_0 \hat{\boldsymbol{z}}$$

Come nel problema precedente del moto traslatorio, il campo di induzione magnetica applicato è posto nel piano $X \times Y$, così da essere espresso dall'Eq. (23).

- II.1 Le cariche elettriche libere della sfera (solida) sono trascinate, nella rotazione, su traiettorie circolari coassiali. Pertanto, un campo elettrico *magneto-motore*, $\mathcal{E}' \equiv \mathcal{E}'(\mathbf{r})$, viene indotto *all'interno* della sfera. È più opportuno riferire la sua rappresentazione all'intero spazio,

$$\boldsymbol{\mathcal{E}}' \equiv \begin{cases} \boldsymbol{\mathcal{E}}_1' = \boldsymbol{v}(\boldsymbol{r}) \times \boldsymbol{B}_0, & \text{per } \boldsymbol{r} \in [0, a), \\ \boldsymbol{\mathcal{E}}_2' = \boldsymbol{0}, & \text{per } \boldsymbol{r} \in (a, +\infty), \end{cases}$$
(56)

essendo $v(\mathbf{r}) \equiv \omega_0 \times \mathbf{r}$ il campo di velocità di trascinamento delle cariche libere *nella* sfera. Ora, \mathbf{E}'_1 *non* è irrotazionale, il che è consistente con la rotazione *stazionaria* della sfera. Infatti,

$$\nabla \times \mathbf{\mathcal{E}}_{1}' = \nabla \times (\mathbf{v} \times \mathbf{B}_{0}) = (\nabla \cdot \mathbf{B}_{0}) \mathbf{v} - (\nabla \cdot \mathbf{v}) \mathbf{B}_{0} + (\mathbf{B}_{0} \cdot \nabla) \mathbf{v} - (\mathbf{v} \cdot \nabla) \mathbf{B}_{0}$$

$$= -(\nabla \cdot (\boldsymbol{\omega}_{0} \times \mathbf{r})) \mathbf{B}_{0} + (\mathbf{B}_{0} \cdot \nabla) (\boldsymbol{\omega}_{0} \times \mathbf{r})$$

$$= \boldsymbol{\omega}_{0} \cdot (\nabla \times \mathbf{r}) - \mathbf{r} \cdot (\nabla \times \boldsymbol{\omega}_{0}) + \boldsymbol{\omega}_{0} \times (\mathbf{B}_{0} \cdot \nabla) \mathbf{r}, \qquad \text{essendo } \boldsymbol{\omega}_{0} \text{ uniforme,}$$

$$= \boldsymbol{\omega}_{0} \times \mathbf{B}_{0} \equiv \boldsymbol{\omega}_{0} \mathbf{B}_{0,r} \, \hat{\mathbf{y}}. \qquad (57)$$

Comunque, $\boldsymbol{\mathcal{E}}'_1$ non \dot{e} neppure solenoidale; infatti, si calcola

$$\nabla \cdot \mathbf{\mathcal{E}}_{1}^{\prime} = \nabla \cdot (\mathbf{v} \times \mathbf{B}_{0}) = \mathbf{B}_{0} \cdot (\nabla \times \mathbf{v}) - \mathbf{v} \cdot (\nabla \times \mathbf{B}_{0}) = \mathbf{B}_{0} \cdot (\nabla \times (\boldsymbol{\omega}_{0} \times \mathbf{r}))$$

$$= \mathbf{B}_{0} \cdot ((\nabla \cdot \mathbf{r}) \boldsymbol{\omega}_{0} - (\nabla \cdot \boldsymbol{\omega}_{0}) \mathbf{r} + (\mathbf{r} \cdot \nabla) \boldsymbol{\omega}_{0} - (\boldsymbol{\omega}_{0} \cdot \nabla) \mathbf{r})) = \mathbf{B}_{0} \cdot (3\boldsymbol{\omega}_{0} - \boldsymbol{\omega}_{0})$$

$$= 2\boldsymbol{\omega}_{0} \cdot \mathbf{B}_{0} \equiv 2\boldsymbol{\omega}_{0} \mathbf{B}_{0,z}.$$
(58)

Il risultato fornito dall'Eq. (58) porta ad alcune conseguenze interessanti.

Si consideri la sfera *proprio all'istante* iniziale della rotazione. Poiché è ancora $\mathbf{\mathcal{E}}'_2 = \mathbf{0}$, anche $\mathcal{E}'_{2,r} = 0$, ovviamente. Là dove $\mathcal{E}'_{1,r}(a, \theta, \varphi) \neq 0$, la discontinuità alla frontiera della componente normale del campo elettrico *magneto-motore* indica che una ridistribuzione delle cariche elettriche libere sta per aver luogo sulla superficie della sfera.

Una volta che il regime stazionario è raggiunto ovunque, il campo elettrico *totale* all'interno della sfera, $\mathbf{\mathcal{E}}_1$, risulta solenoidale, com'è richiesto per un mezzo conduttore. Confrontando $\mathbf{\nabla} \cdot \mathbf{\mathcal{E}}_1 = 0$ con l'Eq. (58), la conclusione è che, ora, un campo *elettrico stazionario* indotto, $\mathbf{\mathcal{E}}_1^*$, tale che la sua divergenza *cancella esattamente* quella di $\mathbf{\mathcal{E}}_1'$, è presente *nella* sfera,

$$\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{E}}_{1}^{*} \equiv -2\,\boldsymbol{\omega}_{0}B_{0,z}\,. \tag{59}$$

In altri termini, il potenziale associato a $\mathbf{\mathcal{E}}_{1}^{*}$ soddisfa l'*Equazione di Poisson* con *densità* uniforme di carica-sorgente volumetrica data da

$$\boldsymbol{\rho}_1 = -2\boldsymbol{\varepsilon}_0\boldsymbol{\omega}_0\boldsymbol{B}_{0,z},$$

la quale corrisponde all'eccesso di carica interna alla sfera

$$Q_{1,V} = -(8/3)\pi a^{3} \varepsilon_{0} \omega_{0} B_{0,z}.$$
(60.1)

Quindi, poiché la sfera rimane *elettricamente neutra* complessivamente, essa deve portare una carica netta opposta *sulla superficie*,

$$Q_{1,S} = -Q_{1,V} \equiv (8/3)\pi a^3 \varepsilon_0 \omega_0 B_{0,z}, \qquad (60.2)$$

come sarà verificato esplicitamente nella soluzione II.4. La differenza, qui, rispetto al moto traslatorio, è che l'effetto di induzione non si limita, semplicemente, a ridistribuire le cariche libere sulla superficie della sfera: di fatto, due quantità opposte di carica vengono mantenute confinate, una *nella* sfera l'altra *sulla* sua superficie, a seconda del segno di $\omega_0 B_{0,z}$.

Per quanto riguarda $Q_{1,S}$, essa è sorgente di un campo elettrostatico all'interno del fluido, $\boldsymbol{\mathcal{E}}_{2}^{*}$, che soddisfa l'*Equazione di Laplace* e corrisponde, nel fluido, al campo elettrico *totale*.

Potrebbe essere sollevata una critica immediata circa l'omissione degli effetti incrociati di $Q_{1,V}$ sul fluido e di $Q_{1,S}$ sulla regione interna alla sfera, entrambi da attendersi secondo il *Principio di Sovrapposizione*. L'obiezione, però, cade su una questione sottile ma fondamentale: finché la sfera continua a ruotare *uniformemente*, il regime elettrico dominante nell' *f* - *sistema non* è quello statico bensì quello di *corrente stazionaria*! Le sorgenti elettriche sono *indotte*, non puramente statiche. La condizione di frontiera, alla superficie della sfera, di *continuità* della componente normale della densità di corrente *stazionaria*, *mantiene soppressi* gli effetti *di rotore* paventati, impedendo un accumulo illimitato – e, quindi, non-fisico – di energia elettromagnetica all'interno della sfera.

Come conclusione, la rappresentazione spaziale completa del campo elettrico totale è

$$\boldsymbol{\mathcal{E}} \equiv \begin{cases} \boldsymbol{\mathcal{E}}_1 = \boldsymbol{v} \times \boldsymbol{B}_0 + \boldsymbol{\mathcal{E}}_1^*, & \text{per } r \in [0, a), \\ \boldsymbol{\mathcal{E}}_2 = \boldsymbol{\mathcal{E}}_2^*, & \text{per } r \in (a, +\infty). \end{cases}$$
(61)

Analogamente alle Eq. (15), la singolarità di sorgente alla superficie della sfera traspare dalle Eq. (61). Per rendere l'*intero* spazio topologicamente continuo vs. il raccordo delle funzioni-potenziale interna ed esterna alla frontiera r = a, queste sono richieste di soddisfare le *Equazioni di Poisson generalizzate* seguenti:

$$\nabla^{2} \boldsymbol{\Phi}_{1}^{*} \equiv -\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{E}}_{1}^{*} = 2 \,\boldsymbol{\omega}_{0} B_{0,z} \boldsymbol{\Theta}(a-r) + \frac{\boldsymbol{\sigma}(\boldsymbol{\theta}, \boldsymbol{\varphi})}{\boldsymbol{\varepsilon}_{0}} \,\delta(a-r), \quad \text{per } r \in [0, a],$$

$$\nabla^{2} \boldsymbol{\Phi}_{2}^{*} \equiv -\boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{E}}_{2}^{*} = -\frac{\boldsymbol{\sigma}(\boldsymbol{\theta}, \boldsymbol{\varphi})}{\boldsymbol{\varepsilon}_{0}} \,\delta(r-a), \quad \text{per } r \in [a, +\infty),$$
(62)

dove Θ è la *funzione-gradino unitaria* ($\Theta(0) := 0$) di HEAVISIDE (OLIVER, 1850-1925) e $\sigma(\theta, \varphi)$ è la densità di $Q_{1,S}$, sulla superficie della sfera.

Correnti *parassite* di conduzione circolano tra la sfera e il fluido, fintantoché la conduttività del fluido persiste. Se $\kappa_2 \equiv 0$, esse rimangono confinate all'*interno* della sfera. Tale questione sarà toccata quantitativamente nella soluzione II.5.

In generale, sia \mathbf{E}_1 che \mathbf{E}_2 sostengono le densità di corrente (parassita) rispettive

$$\boldsymbol{J}_1 = \boldsymbol{\kappa}_1 \boldsymbol{\mathcal{E}}_1 \equiv \boldsymbol{\kappa}_1 (\boldsymbol{v} \times \boldsymbol{B}_0 + \boldsymbol{\mathcal{E}}_1^*), \tag{63}$$

$$\boldsymbol{J}_2 = \boldsymbol{\kappa}_2 \boldsymbol{\mathcal{E}}_2. \tag{64}$$

- II.2 Le stesse considerazioni che portano all'Eq. (18) si applicano anche qui. Le condizioni di frontiera sufficienti per l'univocità della soluzione del problema sono:
- a. la *continuità* della componente vettoriale *tangenziale* di \mathbf{E}^* attraverso l'interfaccia sferica,

$$\boldsymbol{\mathcal{E}}_{2,\parallel}^*(a,\theta,\varphi) = \boldsymbol{\mathcal{E}}_{1,\parallel}^*(a,\theta,\varphi)\,,$$

i.e., specificamente,

$$\hat{\boldsymbol{\theta}} \mathcal{E}_{2,\theta}^*(a,\theta,\varphi) + \hat{\boldsymbol{\varphi}} \mathcal{E}_{2,\varphi}^*(a,\theta,\varphi) = \hat{\boldsymbol{\theta}} \mathcal{E}_{1,\theta}^*(a,\theta,\varphi) + \hat{\boldsymbol{\varphi}} \mathcal{E}_{1,\varphi}^*(a,\theta,\varphi).$$
(65)

L'Eq (64) equivale alla coppia di condizioni scalari simultanee

$$\begin{cases} \mathcal{E}_{2,\theta}^{*}(a,\theta,\varphi) = \mathcal{E}_{1,\theta}^{*}(a,\theta,\varphi), \\ \mathcal{E}_{2,\varphi}^{*}(a,\theta,\varphi) = \mathcal{E}_{1,\varphi}^{*}(a,\theta,\varphi). \end{cases}$$
(66)

Le Eq. (62) mostrano che i potenziali interno ed esterno alla sfera soddisfano equazioni di *campo* differenti (quasi) ovunque nei dominî rispettivi. Questa circostanza rende il metodo di identificazione biunivoca dei coefficienti (cf/c Eq. (20)) *non applicabile*. Per esserlo, i termini di sorgente dovrebbero risultare *identici*;

b. la *continuità* della componente *normale* della densità di corrente (stazionaria) attraverso l'interfaccia sferica, v. Eq. (21);

c. l'*evanescenza* di $\mathbf{\mathcal{E}}_2$ a distanze crescenti dalla sfera, i.e., $\forall \{\theta, \phi\}$, deve aversi che

$$\lim_{r \to +\infty} \mathbf{\mathcal{E}}_{2}(r, \theta, \varphi) = \mathbf{0}.$$
(67)

II.3 Il calcolo di $\boldsymbol{\mathcal{E}}_1'$ è immediato:

$$\begin{aligned} \boldsymbol{\mathcal{E}}_{1}^{\prime} &\equiv \boldsymbol{v} \times \boldsymbol{B}_{0} = (\boldsymbol{\omega}_{0} \times \boldsymbol{r}) \times \boldsymbol{B}_{0} = (\boldsymbol{\omega}_{0} \cdot \boldsymbol{B}_{0}) \boldsymbol{r} - (\boldsymbol{B}_{0} \cdot \boldsymbol{r}) \boldsymbol{\omega}_{0} \\ &= \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,z} (\boldsymbol{x} \hat{\boldsymbol{x}} + \boldsymbol{y} \hat{\boldsymbol{y}} + \boldsymbol{z} \hat{\boldsymbol{z}}) - (\boldsymbol{B}_{0,x} \boldsymbol{x} + \boldsymbol{B}_{0,z} \boldsymbol{z}) \boldsymbol{\omega}_{0} \hat{\boldsymbol{z}} \\ &\equiv \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,z} \left(\hat{\boldsymbol{x}} \frac{\partial}{\partial \boldsymbol{x}} + \hat{\boldsymbol{y}} \frac{\partial}{\partial \boldsymbol{y}} \right) (\boldsymbol{x}^{2} + \boldsymbol{y}^{2}) / 2 - \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,x} \boldsymbol{x} \hat{\boldsymbol{z}} \\ &\equiv \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,z} \boldsymbol{\nabla} (\boldsymbol{x}^{2} + \boldsymbol{y}^{2}) / 2 - \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,x} \boldsymbol{x} \hat{\boldsymbol{z}}. \end{aligned}$$
(68)

Esprimendo l'Eq. (68) in coordinate sferiche, si ottiene

$$\boldsymbol{\mathcal{E}}_{1}^{\prime} \equiv \frac{1}{2} \boldsymbol{\omega}_{0} B_{0,z} \boldsymbol{\nabla} (r^{2} (\sin \theta)^{2}) - \boldsymbol{\omega}_{0} B_{0,x} r \sin \theta \cos \boldsymbol{\varphi} (\hat{\boldsymbol{r}} \cos \theta - \hat{\boldsymbol{\theta}} \sin \theta)$$

$$= \hat{\boldsymbol{r}} \boldsymbol{\omega}_{0} r (-B_{0,x} \cos \theta \sin \theta \cos \boldsymbol{\varphi} + B_{0,z} (\sin \theta)^{2}) + \mathbf{u}$$

$$(69)$$

$$+ \hat{\boldsymbol{\theta}} \,\boldsymbol{\omega}_0 r \left(-B_{0,x}(\sin\theta)^2 \cos\varphi + B_{0,z}\cos\theta\sin\theta\right).$$
⁽⁷⁰⁾

Dalla rappresentazione (70), la componente di \mathbf{E}'_1 normale alla superficie della sfera,

$$\lim_{r \to a^-} \mathcal{E}'_{1,r}(r,\theta,\varphi) \equiv \omega_0 a \left(-B_{0,x} \cos\theta \sin\theta \cos\varphi + B_{0,z} (\sin\theta)^2\right), \tag{71}$$

appare generalmente non-nulla in regime stazionario. Questo è sufficiente per concludere che è stata indotta una ridistribuzione di cariche elettriche libere alla superficie della sfera poiché, dalla seconda delle Eq. (56), risulta $\lim_{r \to a^+} \mathcal{E}'_{2,r}(r, \theta, \varphi) \equiv 0$.

La determinazione di $\mathbf{\mathcal{E}}_{1}^{*}$ richiede un'analisi un po' attenta. Ricordando che $\mathbf{\mathcal{E}}_{1}^{*} = -\nabla \boldsymbol{\Phi}_{1}^{*}$, si può, dalla *Teoria delle Equazioni DDP* (ellittiche), cercare una funzione *potenziale-interno* della forma

$$\boldsymbol{\Phi}_1^*(\boldsymbol{r}) := \boldsymbol{\Psi}_1^*(\boldsymbol{r}) + \boldsymbol{H}_1(\boldsymbol{r}).$$

La funzione $\Psi_1^*(\mathbf{r})$ è rappresentabile con l'espansione (31), i.e., soddisfa l'*Equazione di Laplace*, mentre la richiesta su $H_1(\mathbf{r})$ è che generi il *termine soppressore* di $\nabla \cdot \mathbf{\mathcal{E}}'_1$, i.e., che soddisfi l'*equazione di Poisson* $\nabla^2 H_1(\mathbf{r}) = 2\omega_0 B_{0,z}$ all'interno della sfera (cf/c Eq. (58)).

Però, un'incertezza affiora evidente: $H_1(\mathbf{r})$ potrebbe essere un elemento qualsiasi della famiglia

$$\mathcal{H}(\boldsymbol{r};\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) := \left\{ \boldsymbol{\eta} : \{\boldsymbol{r};\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}\} \mapsto \boldsymbol{\eta}(\boldsymbol{r};\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\gamma}) := \boldsymbol{\omega}_0 B_{0,z} \frac{\boldsymbol{\alpha} x^2 + \boldsymbol{\beta} y^2 + \boldsymbol{\gamma} z^2}{\boldsymbol{\alpha} + \boldsymbol{\beta} + \boldsymbol{\gamma}} \right\}$$

di funzioni-potenziale, caratterizzata dalla terna parametrica $\{\alpha, \beta, \gamma\} \neq \{0, 0, 0\}$. Infatti, risulta $\nabla^2 \eta(\mathbf{r}; \alpha, \beta, \gamma) \equiv 2\omega_0 B_{0,z}, \forall \{\alpha, \beta, \gamma\} \neq \{0, 0, 0\}$, come è immediato verificare.

Con $\{\overline{\alpha}, \overline{\beta}, \overline{\gamma}\} \subset \mathbb{C} \setminus \{0\}$, le famiglie di terne parametriche formalmente ammissibili sono 7:

$$\{\overline{\alpha},\overline{\beta},\overline{\gamma}\},\{\overline{\alpha},\overline{\beta},0\},\{\overline{\alpha},0,\overline{\gamma}\},\{0,\overline{\beta},\overline{\gamma}\},\{\overline{\alpha},0,0\},\{0,\overline{\beta},0\} \in \{0,0,\overline{\gamma}\},$$

ma, nel contesto specifico, *soltanto una* può risultare *fisicamente* significativa. A tale proposito, si indichi con $\partial \mathbf{\mathcal{E}}'_1$, la *parte divergenziale* di $\mathbf{\mathcal{E}}'_1$. Nell'Eq. (68), è

$$\partial \boldsymbol{\mathcal{E}}_{1}^{\prime} \equiv \boldsymbol{\omega}_{0} B_{0,z} \boldsymbol{\nabla} (x^{2} + y^{2}) / 2 = \boldsymbol{\omega}_{0} B_{0,z} (x \hat{\boldsymbol{x}} + y \hat{\boldsymbol{y}}).$$
(72)

Ora, dall'equazione di Continuità della densità di carica elettrica, la quantità

$$\frac{\partial \rho}{\partial t} = -\boldsymbol{\nabla} \cdot \boldsymbol{J}_{1}'$$
$$\equiv -\boldsymbol{\nabla} \cdot (\kappa_{1} \partial \boldsymbol{\mathcal{E}}_{1}') \equiv -\kappa_{1} \boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{E}}_{1}' = -2\kappa_{1} \omega_{0} B_{0,z}$$

è il tasso di flusso per-unità-di-volume delle cariche *libere* guidate dal *solo* campo $\mathbf{\mathcal{E}}'_1$. Il punto importante, qui, è osservare che un regime *persistente* di corrente stazionaria può essere raggiunto solo in presenza di un campo elettrico aggiuntivo che *non* causa alcun effetto di cancellazione su $\partial \mathbf{\mathcal{E}}'_1$, né totale né parziale, ma che, semplicemente, *annichila la sua divergenza*.

In altri termini, l'Eq. (72) indica che è *sufficiente* un campo elettrico che sia *normale* a $\partial \mathbf{\mathcal{E}}'_1$, i.e., *assiale*, in grado di far persistere un flusso 'stabilizzante' di cariche elettriche libere attraverso la superficie della sfera e parallelo all'asse di rotazione di questa.

La conclusione è che soltanto l'ultima delle terne precedenti, $\{0, 0, \overline{\gamma}\}$, con $\overline{\gamma} \neq 0$, è *fisicamente significativa* per l'identificazione di $H_1(\mathbf{r})$. Da tale terna, si ottiene

$$H_{1}(\mathbf{r}) = \omega_{0}B_{0,z}z^{2}$$

= $\omega_{0}B_{0,z}r^{2}(\cos\theta)^{2} \equiv H_{1}(r,\theta)$
= $\frac{1}{2}\omega_{0}B_{0,z}r^{2}((\sin\theta)^{2} + (3(\cos\theta)^{2} - 1))),$ (73)

mostrando che $H_1(\mathbf{r})$ è scomponibile nella somma del termine *soppressore* appropriato, cf/c Eq. (69), e di un termine di aggiustamento *quadrupolare* puro che soddisfa *localmente* l'*Equazione di Laplace*, riflettendo la simmetria assiale della distribuzione di carica elettrica all'interno della sfera.

Il passo successivo è costituito dalla determinazione di $\mathbf{\mathcal{E}}_2^* \equiv -\nabla \boldsymbol{\Phi}_2^*$.

In vista del *raccordo di continuità* alla frontiera $r = a \operatorname{con} \Phi_1^*(r)$, si definisce, analogamente,

$$\boldsymbol{\Phi}_{2}^{*}(\boldsymbol{r}) := \boldsymbol{\Psi}_{2}^{*}(\boldsymbol{r}) + \boldsymbol{H}_{2}(\boldsymbol{r}),$$

dove sia $\Psi_2^*(\mathbf{r})$ che $H_2(\mathbf{r})$ soddisfano l'*Equazione di Laplace* e la condizione asintotica (67). Pertanto, la forma di $\Psi_2^*(\mathbf{r})$ è la stessa del problema precedente di traslazione, v. Eq. (32),

$$\Psi_2^*(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_l \frac{a^{2l+1}}{r^{l+1}} \Upsilon_{l,m}(\theta,\varphi).$$

Considerata la seconda condizione scalare di frontiera (66), quella *azimutale*, si scrive, tenendo conto dell'Eq. (73),

$$\left(-\frac{1}{r\sin\theta}\frac{\partial}{\partial\varphi}(\boldsymbol{\Psi}_{2}^{*}(r,\theta,\varphi)+\boldsymbol{H}_{2}(\boldsymbol{r}))\right)_{r=a}=\left(-\frac{1}{r\sin\theta}\frac{\partial}{\partial\varphi}(\boldsymbol{\Psi}_{1}^{*}(r,\theta,\varphi)+\boldsymbol{H}_{1}(r,\theta))\right)_{r=a},$$

i.e., sostituendo le espressioni esplicite pertinenti ed eseguendo le φ -derivazioni, risulta

$$\sum_{l=0}^{+\infty} \sum_{m=0}^{l} (\beta_l / a^{l+1}) (P_{l,m}(\cos\theta)) m (-C_{l,m} \sin(m\varphi) + S_{l,m} \cos(m\varphi)) + \partial H_2(\mathbf{r}) / \partial \varphi \Big|_{r=a} = \mathbf{r}$$

$$= \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_l a^l (P_{l,m}(\cos\theta)) m (-C_{l,m} \sin(m\varphi) + S_{l,m} \cos(m\varphi)) + \partial H_1(\mathbf{r}, \theta) / \partial \varphi \Big|_{r=a}.$$

Applicando il *Principio di Identità delle Serie*, si vede immediatamente che $\partial H_2(\mathbf{r})/\partial \varphi \Big|_{r=a} \equiv 0$. Ciò implica, al più, la dipendenza $H_2(\mathbf{r}) \equiv H_2(r, \theta)$ e, quindi, l'identità $\beta_l \equiv \alpha_l a^{2l+1}$, come nel problema traslazionale, cf/c Eq. (29).

Ora, la prima condizione scalare di frontiera (66), quella *polare*, può essere usata per determinare $H_2(r, \theta)$. Le sostituzioni varie e l'Eq. (73) ne forniscono la forma più esplicita

$$\left(-\frac{1}{r}\frac{\partial}{\partial\theta}(\Psi_{2}^{*}(r,\theta,\varphi)+H_{2}(r,\theta))\right)_{r=a}=\left(-\frac{1}{r}\frac{\partial}{\partial\theta}(\Psi_{1}^{*}(r,\theta,\varphi)+\omega_{0}B_{0,z}r^{2}(\cos\theta)^{2})\right)_{r=a}$$

equivalente all'uguaglianza

$$\sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_{l} \frac{a^{2l+1}}{a^{l+1}} \frac{\partial \Upsilon_{t,m}(\theta, \varphi)}{\partial \theta} + \frac{\partial H_{2}(r, \theta)}{\partial \theta} \bigg|_{r=a} = 1$$

$$= \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_{t} a^{l} \frac{\partial \Upsilon_{t,m}(\theta, \varphi)}{\partial \theta} - \omega_{0} B_{0,z} a^{2} \cos \theta \sin \theta.$$

Passando all'uguaglianza tra i θ - integrali indefiniti dei termini sopravvissuti nei membri,

$$\int (\partial H_2(r,\theta)/\partial \theta) \Big|_{r=a} d\theta = -\omega_0 B_{0,z} a^2 \int \cos\theta \sin\theta d\theta,$$

si trova, con ξ costante di integrazione, che

$$H_{2}(r,\theta)\Big|_{r=a} = \omega_{0}B_{0,z}a^{2}((\cos\theta)^{2} + \xi)$$

$$\equiv \omega_{0}B_{0,z}a^{k+2}/r^{k}\Big|_{r=a}((\cos\theta)^{2} + \xi).$$
(74)

La specificità dell'identità (74) corrisponde all'aspettativa fondata che $H_2(r, \theta)$ sia assorbibile nell'espansione generale (32) di $\Psi_2^*(r, \theta, \varphi)$. Le identificazioni rispettive delle costanti danno $\xi = -1/3$ e $k \equiv l+1 = 3$; con esse, si scrive

$$H_{2}(r,\theta) = \frac{1}{3}\omega_{0}B_{0,z}a^{5} \frac{3(\cos\theta)^{2} - 1}{r^{3}}, \qquad (75)$$

riconoscibile come un termine potenziale *quadrupolare*, azimutalmente simmetrico (v. [¹], [²], [³], [⁵], [⁷], [¹²], [¹⁴].

A questo punto, le informazioni disponibili sono sufficienti per avviare la determinazione dei *potenziali elettrostatici* nella sfera e nel fluido, rispettivamente. Le rappresentazioni preliminari formali sono

$$\boldsymbol{\Phi}_{1}^{*}(r,\boldsymbol{\theta},\boldsymbol{\varphi}) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_{l} r^{l} \boldsymbol{\Upsilon}_{l,m}(\boldsymbol{\theta},\boldsymbol{\varphi}) + \boldsymbol{\omega}_{0} \boldsymbol{B}_{0,z} r^{2} (\cos \boldsymbol{\theta})^{2}, \qquad (76.1)$$

$$\boldsymbol{\Phi}_{2}^{*}(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} \alpha_{l} \frac{a^{2l+1}}{r^{l+1}} \Upsilon_{l,m}(\theta,\varphi) + \frac{1}{3} \omega_{0} B_{0,z} a^{5} \frac{3(\cos\theta)^{2} - 1}{r^{3}} .$$
(76.2)

Poi, si esegue il calcolo dei coefficienti α_i , sfruttando la condizione imposta alla frontiera relativa alle componenti *normali* delle densità di corrente attraverso l'interfaccia tra la sfera e il fluido. Dall'Eq. (21), si scrive

$$\kappa_{2} \lim_{r \to a^{+}} \left(-\frac{\partial}{\partial r} \boldsymbol{\Phi}_{2}^{*}(r, \theta, \varphi) \right) = \kappa_{1} \left(\mathcal{E}_{1, r}(a, \theta, \varphi) + \lim_{r \to a^{-}} \left(-\frac{\partial}{\partial r} \boldsymbol{\Phi}_{1}^{*}(r, \theta, \varphi) \right) \right)$$

che, dopo le sostituzioni specifiche e qualche manovra algebrica, si trasforma nella catena

$$\begin{split} \kappa_1 \omega_0 B_{0,x} \cos\theta \sin\theta \cos\varphi + (\kappa_1 + \kappa_2) \,\omega_0 B_{0,z} (3(\cos\theta)^2 - 1) &\equiv \\ &\equiv (1/3) \,\kappa_1 \omega_0 B_{0,x} (P_{2,1}(\cos\theta)) \cos\varphi + 2(\kappa_1 + \kappa_2) \,\omega_0 B_{0,z} P_{2,0}(\cos\theta) = \\ &= -\sum_{l=0}^{+\infty} \sum_{m=0}^{l} \left(l \,\kappa_1 + (l+1) \,\kappa_2 \right) \alpha_l \, a^{l-2} (P_{l,m}(\cos\theta) (C_{lm}\cos(m\varphi) + S_{lm}\sin(m\varphi)) \,. \end{split}$$

Disponendo della tabella solita di *Funzioni di Legendre Associate*, il confronto biunivoco degli addendi del *secondo* e del *terzo* membro porta alla conclusione immediata che $C_{lm} \equiv 0 \ \forall l$ e, quindi, anche $\forall m$. In tal modo, si deduce che $\gamma_{l,m} := \alpha_l S_{l,m} \equiv 0, \forall \{l,m\} \neq \{2,1\} \lor \{2,0\}.$

Il rango m = 1 rende conto della *rottura di simmetria assiale* nella dinamica del sistema, i.e., rappresenta la dipendenza *azimutale* introdotta dalla componente trasversale $B_{0,x}$ del campo di induzione magnetica. I termini non-nulli nell'ultima uguaglianza scritta,

$$(1/3) \kappa_{1} \omega_{0} B_{0,x} P_{2,1}(\cos\theta) \cos\varphi + 2(\kappa_{1} + \kappa_{2}) \omega_{0} B_{0,z} P_{2,0}(\cos\theta) = \mathcal{A}_{1}$$
$$= -(2\kappa_{1} + 3\kappa_{2}) \gamma_{2,1} (P_{2,1}(\cos\theta)) \cos\varphi - (2\kappa_{1} + 3\kappa_{2}) \gamma_{2,0} P_{2,0}(\cos\theta),$$

conducono alle identificazioni biunivoche

$$\begin{split} \gamma_{2,0} &= -\frac{2(\kappa_1 + \kappa_2)\omega_0 B_{0,z}}{2\kappa_1 + 3\kappa_2} ,\\ \gamma_{2,1} &= -\frac{\kappa_1 \omega_0 B_{0,x}}{3(2\kappa_1 + 3\kappa_2)} . \end{split}$$

Le Eq. (76) e (77) assumono, allora, le loro forme finali esplicite:

$$\boldsymbol{\Phi}_{1}^{*}(r,\boldsymbol{\theta},\boldsymbol{\varphi}) = -\frac{\boldsymbol{\omega}_{0}}{2\kappa_{1}+3\kappa_{2}}r^{2}(\kappa_{1}B_{0,x}\cos\boldsymbol{\theta}\sin\boldsymbol{\theta}\cos\boldsymbol{\varphi} - B_{0,z}(\kappa_{1}(\sin\boldsymbol{\theta})^{2}+\kappa_{2})), \quad (77.1)$$

$$\boldsymbol{\Phi}_{2}^{*}(r,\theta,\varphi) = -\frac{\omega_{0}\kappa_{1}a^{5}}{2\kappa_{1}+3\kappa_{2}}\frac{1}{r^{3}}\left(B_{0,x}\cos\theta\sin\theta\cos\varphi + \frac{1}{3}B_{0,z}(3(\cos\theta)^{2}-1)\right).$$
(77.2)

L'operazione di *gradiente* sulle Eq. (77.1) e (77.2) conclude la ricerca dei *campi elettrostatici* nei due mezzi conduttori. In coordinate sferiche, le espressioni risultanti sono

$$\begin{aligned} \boldsymbol{\mathcal{E}}_{1}^{*}(r,\theta,\varphi) &= -\boldsymbol{\nabla}\boldsymbol{\mathcal{\Phi}}_{1}^{*}(r,\theta,\varphi) \\ &= \frac{\omega_{0}}{2\kappa_{1}+3\kappa_{2}} r\left(\hat{\boldsymbol{r}}2(\kappa_{1}B_{0,x}\cos\theta\sin\theta\cos\varphi - B_{0,z}(\kappa_{1}(\sin\theta)^{2}+\kappa_{2})) + \boldsymbol{\mathcal{A}}\right) \\ & \qquad \boldsymbol{\mathcal{A}}^{+} \hat{\boldsymbol{\theta}}\kappa_{1}(B_{0,x}(2(\cos\theta)^{2}-1)\cos\varphi - 2B_{0,z}\cos\theta\sin\theta) + \boldsymbol{\mathcal{A}} \\ & \qquad \boldsymbol{\mathcal{A}}^{+} \hat{\boldsymbol{\varphi}}(-\kappa_{1}B_{0,x}\cos\theta\sin\varphi)), \end{aligned}$$
(78)

$$\boldsymbol{\mathcal{E}}_{2}^{*}(r,\theta,\varphi) \equiv -\boldsymbol{\nabla}\boldsymbol{\Phi}_{2}^{*}(r,\theta,\varphi)$$

$$= \frac{\omega_{0}\kappa_{1}}{2\kappa_{1}+3\kappa_{2}}\frac{a^{5}}{r^{4}}\left(\hat{\boldsymbol{r}}\left(-3B_{0,x}\cos\theta\sin\theta\cos\varphi - B_{0,z}(3(\cos\theta)^{2}-1)\right) + \boldsymbol{\mathcal{I}}_{1}\right)$$

$$\downarrow + \hat{\boldsymbol{\theta}}\left(B_{0,x}(2(\cos\theta)^{2}-1)\cos\varphi - 2B_{0,z}\cos\theta\sin\theta\right) + \boldsymbol{\mathcal{I}}_{2}$$

$$\downarrow + \hat{\boldsymbol{\varphi}}\left(-B_{0,x}\cos\theta\sin\varphi\right)\right).$$
(79)

Infine, mediante l'inclusione dell'Eq. (70), le Eq.i (61) generano la rappresentazione del campo elettrico *totale* ovunque:

per $r \in [0, a)$, all'*interno* della sfera, si ha

$$\boldsymbol{\mathcal{E}} = \boldsymbol{\mathcal{E}}_{1} = \frac{\boldsymbol{\omega}_{0}}{2\kappa_{1} + 3\kappa_{2}} r \left(\hat{\boldsymbol{r}} \kappa_{2} (-3B_{0,x}\cos\theta\sin\theta\cos\varphi - B_{0,z}(3(\cos\theta)^{2} - 1)) + \boldsymbol{\omega} \right)$$
$$\boldsymbol{\mathcal{L}} + \hat{\boldsymbol{\theta}} (B_{0,x}(\kappa_{1} + 3\kappa_{2}(\sin\theta)^{2})\cos\varphi + 3B_{0,z}\kappa_{2}\cos\theta\sin\theta) + \boldsymbol{\omega}$$
$$\boldsymbol{\mathcal{L}} + \hat{\boldsymbol{\varphi}} (-B_{0,x}\kappa_{1}\cos\theta\sin\varphi)); \qquad (80)$$

per $r \in (a, +\infty)$, all'*esterno* della sfera, risulta, dall'Eq. (79),

$$\boldsymbol{\mathcal{E}} \equiv \boldsymbol{\mathcal{E}}_2 = \boldsymbol{\mathcal{E}}_2^*. \tag{81}$$

II.4 Come già sottolineato nella soluzione I.4, P. 12, solo i campi elettrici generati da cariche statiche vs. l'osservatore possono indurre una carica elettrica in eccesso sulla superficie della sfera. Dalle Eq. (78) e (79), si scrive, al solito,

$$\sigma(\theta, \varphi) \equiv \varepsilon_0 \left(\lim_{r \to a^+} \mathcal{E}_{2,r}^*(r, \theta, \varphi) - \lim_{r \to a^-} \mathcal{E}_{2,r}^*(r, \theta, \varphi) \right)$$
$$= \frac{\varepsilon_0 \omega_0 a}{2\kappa_1 + 3\kappa_2} \left(-5B_{0,x} \kappa_1 \cos \theta \sin \theta \cos \varphi + B_{0,z} (5\kappa_1 (\sin \theta)^2 - 2(\kappa_1 - \kappa_2))) \right). \tag{82}$$

Si noti che $\sigma(\theta, \varphi)$ viene indotta in *qualsiasi* circostanza, *anche* quella in cui la conduttività del fluido risulti evanescente, $\kappa_2 \approx 0$.

La carica netta sulla superficie della sfera si calcola con una δ - integrazione diretta:

$$Q_{1,S} = \int_{V_1} \sigma(\theta', \varphi') dv' = \int_0^a r'^2 \delta(a - r') dr' \int_0^\pi \sin\theta' d\theta' \int_0^{2\pi} \sigma(\theta', \varphi') d\varphi'$$

$$= \frac{2\pi a^3 \varepsilon_0 \omega_0 B_{0,z}}{2\kappa_1 + 3\kappa_2} \int_0^\pi (5\kappa_1 (\sin\theta)^2 - 2(\kappa_1 - \kappa_2)) \sin\theta d\theta$$

$$= \frac{8}{3}\pi a^3 \varepsilon_0 \omega_0 B_{0,z}, \qquad (83)$$

avendo osservato che il termine *sovragraffato* nell'Eq. (82) non dà contributo all'integrazione (è nullo sia vs. θ che vs. φ). Il risultato (83) è identico a quello dell'Eq. (60.2), come previsto. La sfera, in ogni caso, rimane *elettricamente neutra* nel suo complesso.

- II.5 Ora, è necessario predisporre i quadrati delle componenti scalari del campo elettrico totale.
- a. All'interno della *sfera*, i.e., per $r \in [0, a)$, si calcolano

$$\begin{split} \mathcal{E}_{1,r}^{2} &= \frac{\omega_{0}^{2}\kappa_{2}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} r^{2}(9B_{0,x}^{2}(\cos\theta\sin\theta\cos\varphi)^{2} + B_{0,z}^{2}(9(\cos\theta)^{4} - 6(\cos\theta)^{2} + 1) + \mathcal{A}_{1} \\ & \mathcal{A}_{1} + 6B_{0,x}B_{0,z}\cos\theta\sin\theta(3(\cos\theta)^{2} - 1)\cos\varphi), \end{split}$$

$$\begin{split} \mathcal{E}_{1,\theta}^{2} &= \frac{\omega_{0}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} r^{2}(B_{0,x}^{2}(\kappa_{1}^{2} + 9\kappa_{2}^{2}(\sin\theta)^{4} + 6\kappa_{1}\kappa_{2}(\sin\theta)^{2})(\cos\varphi)^{2} + \mathcal{A}_{2} \\ & \mathcal{A}_{1} + 9B_{0,z}^{2}\kappa_{2}^{2}(\cos\theta\sin\theta)^{2} + 6B_{0,x}B_{0,z}\kappa_{2}(\kappa_{1}+3\kappa_{2}(\sin\theta)^{2})\cos\theta\sin\theta\cos\varphi), \end{split}$$

$$\begin{split} \mathcal{E}_{1,\varphi}^{2} &= \frac{\omega_{0}^{2}B_{0,x}^{2}\kappa_{1}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} (r\cos\theta\sin\varphi)^{2} + 6B_{0,x}B_{0,z}\kappa_{2}(\kappa_{1}+3\kappa_{2}(\sin\theta)^{2})\cos\theta\sin\theta\cos\varphi), \end{split}$$

b. all'interno del *fluido*, i.e., per $r \in (a, +\infty)$, risultano, invece,

$$\begin{split} \mathcal{E}_{2,r}^{2} &= \frac{\omega_{0}^{2}\kappa_{1}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} \frac{a^{10}}{r^{8}} \left(9B_{0,x}^{2}(\cos\theta\sin\theta\cos\varphi)^{2} + B_{0,z}^{2}(9(\cos\theta)^{4} - 6(\cos\theta)^{2} + 1) + \mathcal{A}_{1}^{2}\right) \\ & \downarrow + 6B_{0,x}B_{0,z}\cos\theta\sin\theta(3(\cos\theta)^{2} - 1)\cos\varphi, \\ \mathcal{E}_{2,\theta}^{2} &= \frac{\omega_{0}^{2}\kappa_{1}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} \frac{a^{10}}{r^{8}} \left(B_{0,x}^{2}(4(\cos\theta)^{4} - 4(\cos\theta)^{2} + 1)(\cos\varphi)^{2} + 4B_{0,z}^{2}(\cos\theta\sin\theta)^{2} - \mathcal{A}_{2}^{2}\right) \\ & \downarrow - 4B_{0,x}B_{0,z}\cos\theta\sin\theta(2(\cos\theta)^{2} - 1)\cos\varphi, \\ \mathcal{E}_{2,\varphi}^{2} &= \frac{\omega_{0}^{2}B_{0,x}^{2}\kappa_{1}^{2}}{(2\kappa_{1}+3\kappa_{2})^{2}} \frac{a^{10}}{r^{8}} (\cos\theta\sin\varphi)^{2}. \end{split}$$

Inoltre, come invarianti vs. un qualsiasi sistema di riferimento ortogonale, sussistono le identità

$$\|\boldsymbol{\mathcal{E}}_{1}\|^{2} \equiv \boldsymbol{\mathcal{E}}_{1} \cdot \boldsymbol{\mathcal{E}}_{1} = \mathcal{E}_{1,r}^{2} + \mathcal{E}_{1,\theta}^{2} + \mathcal{E}_{1,\varphi}^{2},$$
$$\|\boldsymbol{\mathcal{E}}_{2}\|^{2} \equiv \boldsymbol{\mathcal{E}}_{2} \cdot \boldsymbol{\mathcal{E}}_{2} = \mathcal{E}_{2,r}^{2} + \mathcal{E}_{2,\theta}^{2} + \mathcal{E}_{2,\varphi}^{2}.$$

I termini *sovragraffati* in precedenza danno contributo *nullo* all'integrazione sferica, essendo nulli gli integrali azimutali rispettivi. Allora, la potenza dissipata per *effetto termo-elettrico* vale,

a. nella sfera,

$$\begin{aligned} \mathbf{P}_{1} &\equiv \int_{V_{1}} \kappa_{1} \| \mathbf{\mathcal{E}}_{1} \|^{2} dr_{1}^{3} \\ &= \frac{\omega_{0}^{2} \kappa_{1}}{\left(2 \kappa_{1} + 3 \kappa_{2}\right)^{2}} \int_{0}^{a} r^{2} dr \ r^{2} (B_{0,x}^{2} \int_{0}^{2\pi} d\varphi (\cos \varphi)^{2} \int_{0}^{\pi} \sin \theta \, d\theta ((\kappa_{1} + 3 \kappa_{2})^{2} - \zeta) \\ &\downarrow^{-3} \kappa_{2} (2 \kappa_{1} + 3 \kappa_{2})^{2} (\cos \theta)^{2}) + B_{0,x}^{2} \kappa_{1}^{2} \int_{0}^{2\pi} d\varphi (\sin \varphi)^{2} \int_{0}^{\pi} \sin \theta \, d\theta (\cos \theta)^{2} + \zeta \end{aligned}$$

$$+B_{0,z}^{2}\kappa_{1}^{2}\int_{0}^{2\pi}d\varphi\int_{0}^{\pi}\sin\theta\,d\theta\,(3\,(\cos\theta)^{2}+1))\,d\theta$$

La sostituzione classica, $u := \cos \theta$ (v. p. 14) fornisce il risultato prontamente:

$$\mathbf{P}_{1} \equiv \frac{4}{15} \pi a^{5} \omega_{0}^{2} \frac{\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \left(B_{0,x}^{2} (\kappa_{1} + 3\kappa_{2}) + 6B_{0,z}^{2} \frac{\kappa_{2}^{2}}{2\kappa_{1} + 3\kappa_{2}} \right);$$
(84)

b. *nel fluido*,

$$\begin{aligned} \mathbf{P}_{2} &= \int_{V_{1}} \kappa_{2} \| \mathbf{\mathcal{E}}_{2} \|^{2} dr_{2}^{3} \\ &= \frac{\omega_{0}^{2} a^{10}}{(2\kappa_{1} + 3\kappa_{2})^{2}} \kappa_{1}^{2} \kappa_{2} \int_{0}^{a} r^{2} dr \, (1/r^{8}) \, (B_{0,x}^{2} \int_{0}^{2\pi} d\varphi (\cos \varphi)^{2} \int_{0}^{\pi} \sin \theta \, d\theta \, (-5(\cos \theta)^{4} d\varphi)^{4} \\ &\downarrow + 5(\cos \theta)^{2} + 1) + B_{0,x}^{2} \int_{0}^{2\pi} d\varphi (\sin \varphi)^{2} \int_{0}^{\pi} \sin \theta \, d\theta \, (\cos \theta)^{2} + d\varphi^{2} d\varphi^{2$$

Pertanto, la potenza termo-elettrica totale dissipata nel sistema sfera-fluido è data da

$$\mathbf{P} \equiv \mathbf{P}_{1} + \mathbf{P}_{2} = \frac{4}{15} \pi a^{5} \omega_{0}^{2} \frac{\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \left(B_{0,x}^{2}(\kappa_{1} + 3\kappa_{2}) + 2B_{0,z}^{2}\kappa_{2} \right).$$
(86)

Una conseguenza interessante dell'Eq. (82) è che, se il fluido perde la sua conduttività ($\kappa_2 \approx 0$), la dissipazione Joule tende a confinarsi nell'*interno della sfera*, dovuta alle sole correnti parassite lì presenti, purché B_0 non sia, *anche*, totalmente longitudinale, i.e., purché non sia $B_{0,x}^2 \equiv 0$. In tale circostanza, risulta

$$\lim_{\kappa_2 \to 0} \mathbf{P} \equiv \lim_{\kappa_2 \to 0} \mathbf{P}_1 = \frac{2}{5} \pi a^5 \omega_0^2 B_{0,x}^2 \kappa_1.$$
(87)

Con conclusioni analoghe a quelle relative alla soluzione I.5, cf/c Eq. (46), P deve risultare equivalente alla potenza *meccanica* rilasciata all'*intero* spazio. Quindi, essa è legata al *momento di forza resistente* subito dalla sfera, dato da

$$\mathbf{P} = \boldsymbol{\tau}_{R} \cdot \boldsymbol{\omega}_{0} = (-\boldsymbol{\tau}_{R} \hat{\boldsymbol{z}}) \cdot \boldsymbol{\omega}_{0} \hat{\boldsymbol{z}}$$

Scegliendo che sia $\tau_R \omega_0 > 0$, analogamente al caso traslazionale, v. P. 12, il *momento di forza resistente* è esprimibile come

$$\boldsymbol{\tau}_{R} = -\frac{4}{15} \pi a^{5} \boldsymbol{\omega}_{0} \frac{\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \left(B^{2}_{0,x}(\kappa_{1} + 3\kappa_{2}) + 2B^{2}_{0,z}\kappa_{2})\hat{\boldsymbol{z}}\right).$$
(88)

II.6 Nella soluzione I.6, si è ottenuto il risultato generale, per un bagno termico a *temperatura* stazionaria T, dove il tasso di entropia della sfera è esprimibile come

$$\frac{d\mathcal{S}_1}{dt} = \int_{V_1} \frac{\kappa_1 \|\boldsymbol{\mathcal{E}}_1\|^2}{T} dr_1^3$$

Se, inoltre, T ha una dipendenza puramente *radiale*, allora, analogamente all'Eq. (80), si ottiene

$$\Delta S_{1} = \frac{4}{3} \pi \omega_{0}^{2} \frac{\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \left(B_{0,x}^{2}(\kappa_{1} + 3\kappa_{2}) + 6B_{0,z}^{2} \frac{\kappa_{2}^{2}}{2\kappa_{1} + 3\kappa_{2}} \right) \Delta t \int_{0}^{a} \frac{r^{4}}{T(r)} dr \,. \tag{89}$$

L'Eq. (85) mostra che la *rotazione adiabatica* può avvenire solo nell'occorrenza concomitante sia di un campo di induzione magnetica *puramente longitudinale* ($B_0 \equiv B_0 \hat{z}$) sia di evanescenza della conduttività del fluido, $\kappa_2 \approx 0$. In tal senso, si può argomentare che il moto adiabatico della sfera sia *meno* probabile in una rotazione che in una traslazione.

II.7 La fondatezza di tutti i calcoli precedenti nell' *f* - sistema di riferimento e il fatto che il fluido sia non-viscoso sembra indicare che il momento totale di forza sulla sfera sia attribuibile solo alle correnti parassite interne alla sfera. Questo è quanto avviene effettivamente. Per verificarlo, è necessario incominciare dal calcolo diretto del momento della forza magnetica, il quale costituirà un termine di confronto esplicito a sostegno dell'ipotesi.

La *forza magnetica* (lorentziana) che si esercita sulla *corrente* contenuta in un elemento di volume infinitesimo *della sfera* si scrive

$$d\boldsymbol{F}_{L} = \boldsymbol{J}_{1} \times \boldsymbol{B}_{0} dr_{1}^{3} \equiv \kappa_{1} \boldsymbol{\mathcal{E}}_{1} \times \boldsymbol{B}_{0} dr_{1}^{3},$$

cosi che il momento di forza magnetico sulla sfera può essere calcolato dall'integrale

$$\boldsymbol{\tau}_{L} = \kappa_{1} \int_{V_{1}} \boldsymbol{r} \times (\boldsymbol{\mathcal{E}}_{1} \times \boldsymbol{B}_{0}) dr_{1}^{3}, \qquad (90)$$

con la funzione integranda espressa, convenientemente, in coordinate sferiche.

Per prima cosa, si consideri l'Eq. (80) di \mathcal{E}_1 . In vista dell'integrazione (90), i versori della base ortonormale sferica, $\{\hat{r}, \hat{\theta}, \hat{\varphi}\}$, tutti aventi direzione *variabile*, devono essere riespressi in termini della base ortonormale rettangolare $\{\hat{x}, \hat{y}, \hat{z}\}$, *invariante* vs. l'operazione di integrazione. Dopo le trasformazioni necessarie, semplificando e ordinando i termini, si ottiene

$$\boldsymbol{\mathcal{E}}_{1} = \frac{\boldsymbol{\omega}_{0}}{2\kappa_{1} + 3\kappa_{2}} r\left(\hat{\boldsymbol{x}}\left(B_{0,x}\kappa_{1}\cos\theta + B_{0,z}\kappa_{2}\sin\theta\cos\varphi\right) + \hat{\boldsymbol{y}}B_{0,z}\kappa_{2}\sin\theta\sin\varphi + \boldsymbol{y}\right)$$

$$\downarrow + \hat{\boldsymbol{z}}\left(-B_{0,x}(\kappa_{1} + 3\kappa_{2})\sin\theta\cos\varphi - 2B_{0,z}\kappa_{2}\cos\theta\right)$$

$$\equiv \hat{\boldsymbol{x}} \mathcal{E}_{1,x}(r,\theta,\varphi) + \hat{\boldsymbol{y}} \mathcal{E}_{1,y}(r,\theta,\varphi) + \hat{\boldsymbol{z}} \mathcal{E}_{1,z}(r,\theta,\varphi).$$
(91)

Il passo successivo è costituito dalla specificazione del vettore $G := \mathbf{E}_1 \times \mathbf{B}_0$:

$$\boldsymbol{G} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \mathcal{E}_{1,x}(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}) & \mathcal{E}_{1,y}(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}) & \mathcal{E}_{1,z}(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}) \\ B_{0,x} & 0 & B_{0,z} \end{vmatrix}$$

$$= \hat{x} \, \mathcal{E}_{1,y} B_{0,z} - \hat{y} \, (\mathcal{E}_{1,x} B_{0,z} - \mathcal{E}_{1,z} B_{0,x}) - \hat{z} \, \mathcal{E}_{1,y} B_{0,x} = \frac{\omega_0}{2 \kappa_1 + 3 \kappa_2} \, r \, (\hat{x} \, B_{0,z}^2 \, \kappa_2 \sin \theta \sin \varphi + \hat{y} \, (-B_{0,x} B_{0,z} (\kappa_1 + 2\kappa_2) \cos \theta - \mathcal{A}) - (B_{0,x}^2 (\kappa_1 + 3\kappa_2) + B_{0,z}^2 \kappa_2) \sin \theta \cos \varphi) + \hat{z} \, (-B_{0,x} B_{0,z} \kappa_2 \sin \theta \sin \varphi)) \,.$$
(92)

Come completamento della preparazione della funzione integranda nell'Eq. (90), si esprimono le componenti *scalari* di r in coordinate *sferiche*, mantenendo, però, *rettangolare* la base vettoriale ortonormale.

Così, dall'Eq. (92), si scrive

$$\mathbf{r} \times \mathbf{G} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ r \sin\theta \cos\varphi & r \sin\theta \sin\varphi & r \cos\theta \\ G_x(r,\theta,\varphi) & G_y(r,\theta,\varphi) & G_z(r,\theta,\varphi) \end{vmatrix}$$
$$= r(\hat{\mathbf{x}}(rG_z\sin\theta\sin\varphi - rG_y\cos\theta) - \hat{\mathbf{y}}(rG_z\sin\theta\cos\varphi - rG_y\cos\theta) + \mathbf{z}) \\ \mathbf{z} + \hat{\mathbf{z}}(rG_y\sin\theta\cos\varphi - rG_x\sin\theta\sin\varphi))$$
$$= \frac{\omega_0}{2\kappa_1 + 3\kappa_2} r^2(\hat{\mathbf{x}}((\kappa_1 + 2\kappa_2)(\cos\theta)^2 - \kappa_2(\sin\theta\sin\varphi)^2) + \mathbf{z}) \\ \mathbf{z} + (B_{0,x}^2(\kappa_1 + 3\kappa_2) + B_{0,z}^2\kappa_2)\overline{\sin\theta\cos\varphi} + \mathbf{z}) \\ \mathbf{z} + \hat{\mathbf{y}}(\overline{B_{0,x}B_{0,z}\kappa_2(\sin\theta)^2\cos\varphi\sin\varphi} + B_{0,z}^2\kappa_2\cos\theta\sin\theta\sin\varphi)} + \mathbf{z}) \\ \mathbf{z} + \hat{\mathbf{z}}(-B_{0,x}B_{0,z}(\kappa_1 + 2\kappa_2)\overline{\cos\theta\sin\theta\cos\varphi} - \mathbf{z}) \\ \mathbf{z} - (B_{0,x}^2(\kappa_1 + 3\kappa_2) + 2B_{0,z}^2\kappa_2)(\sin\theta\cos\varphi)^2)), \qquad (93)$$

indicando, al solito, *sovragraffati* i termini di contributo integrale *nullo* (precisamente, sono tutti nulli sia vs. θ che vs. φ).

Dunque, l'integrale (90), assume la rappresentazione sferica seguente:

$$\tau_{L} = \frac{\omega_{0}\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \int_{0}^{a} (r^{2}dr)r^{2}(\hat{x}B_{0,x}B_{0,z}((\kappa_{1} + 2\kappa_{2})\int_{0}^{2\pi}d\varphi \int_{0}^{\pi}\sin\theta d\theta - J_{z})$$
$$= \kappa_{2} \int_{0}^{2\pi}d\varphi(\sin\varphi)^{2} \int_{0}^{\pi}(\sin\theta d\theta)(\sin\theta)^{2} - J_{z}$$
$$= -\hat{z}(B_{0,x}^{2}(\kappa_{1} + 3\kappa_{2}) + 2B_{0,z}^{2}\kappa_{2}) \int_{0}^{2\pi}d\varphi(\cos\varphi)^{2} \int_{0}^{\pi}\sin\theta d\theta(\sin\theta)^{2}).$$

Il compattamento algebrico e la sostituzione usuale $u := \cos \theta$ forniscono il risultato agevolmente:

$$\boldsymbol{\tau}_{L} = \frac{4}{15} \pi a^{5} \boldsymbol{\omega}_{0} \frac{\boldsymbol{\kappa}_{1}}{2 \boldsymbol{\kappa}_{1} + 3 \boldsymbol{\kappa}_{2}} \left((\boldsymbol{\kappa}_{1} + \boldsymbol{\kappa}_{2}) B_{0,x} B_{0,z} \, \hat{\boldsymbol{x}} - (B_{0,x}^{2} (\boldsymbol{\kappa}_{1} + 3 \boldsymbol{\kappa}_{2}) + 2 B_{0,z}^{2} \, \boldsymbol{\kappa}_{2}) \, \hat{\boldsymbol{z}} \right)$$
(94)

$$\equiv \frac{4}{15} \pi a^5 \omega_0 B_{0,x} B_{0,z} \frac{\kappa_1 (\kappa_1 + \kappa_2)}{2\kappa_1 + 3\kappa_2} \,\hat{\boldsymbol{x}} + \boldsymbol{\tau}_R, \qquad (94.1)$$

come è immediato concludere dal confronto con l'Eq. (88). In altri termini, *il momento di forza* $\boldsymbol{\tau}_{\scriptscriptstyle R}$

resistente alla rotazione della sfera è dovuto completamente alle correnti parassite sempre presenti nella sfera (v. Eq. (90)), quale che sia la conduttività κ_2 del fluido.

Lo stesso procedimento induttivo applicato, nella soluzione I.7, per la determinazione di una forma generale di $F' \equiv F_R$, sarà applicato a τ_L per determinare il momento di forza *totale*, τ_T , subíto dalla sfera. Comunque, è evidente che deve risultare $\tau_L \equiv \tau_T$, non potendo esservi alcun effetto meccanico esercitato dal fluido *stazionario*, quindi, *non-accelerativo*.

Il procedimento sarà, allora, una verifica della riproducibilità degli stessi risultati ottenuti da τ_L . Nel piano operativo $X \times Y$ (v. Eq. (23)),

a. sia $B_0 \equiv B_0 \hat{z}$, un campo di induzione magnetica totalmente *longitudinale* (i.e., $|| \boldsymbol{\omega}_0$).

Poiché $B_{0,x} = 0$, si ha, dall'Eq. (94),

$$\boldsymbol{\tau}_{L} \equiv \boldsymbol{\tau}_{L,\parallel} = -\frac{8}{15} \pi a^{5} \boldsymbol{\omega}_{0} \|\boldsymbol{B}_{0}\|^{2} \frac{\kappa_{1} \kappa_{2}}{2\kappa_{1} + 3\kappa_{2}} \hat{\boldsymbol{z}}$$
$$\equiv -\frac{8}{15} \pi a^{5} \frac{\kappa_{1} \kappa_{2}}{2\kappa_{1} + 3\kappa_{2}} (\boldsymbol{\omega}_{0} \cdot \boldsymbol{B}_{0}) \boldsymbol{B}_{0} \coloneqq \boldsymbol{\tau}_{T,\parallel}; \qquad (95)$$

b. sia $B_0 \equiv B_0 \hat{x}$, un campo di induzione magnetica totalmente *trasverso* (i.e., $\perp \omega_0$).

Poiché $B_{0,z} = 0$, l'Eq. (94) si riduce a

$$\boldsymbol{\tau}_{L} \equiv \boldsymbol{\tau}_{L,\perp} = -\frac{4}{15} \pi a^{5} \boldsymbol{\omega}_{0} \|\boldsymbol{B}_{0}\|^{2} \frac{\boldsymbol{\kappa}_{1}(\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2})}{2\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2}} \hat{\boldsymbol{z}}$$

$$\equiv -\frac{4}{15} \pi a^{5} \frac{\boldsymbol{\kappa}_{1}(\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2})}{2\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2}} \boldsymbol{B}_{0} \times (\boldsymbol{\omega}_{0} \times \boldsymbol{B}_{0})$$

$$\equiv -\frac{4}{15} \pi a^{5} \frac{\boldsymbol{\kappa}_{1}(\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2})}{2\boldsymbol{\kappa}_{1}+3\boldsymbol{\kappa}_{2}} (\|\boldsymbol{B}_{0}\|^{2} \boldsymbol{\omega}_{0} - (\boldsymbol{\omega}_{0} \cdot \boldsymbol{B}_{0}) \boldsymbol{B}_{0}) \equiv \boldsymbol{\tau}_{T,\perp}.$$
(96)

Poiché alla variabilità *continua* dell'angolo $\prec(\boldsymbol{\omega}_0, \boldsymbol{B}_0)$ corrisponde una generalità sufficiente del vettore $\boldsymbol{\tau}_T$, di modulo *uniforme*, è corretto costruire $\boldsymbol{\tau}_T$ formalmente *sovrapponendo* le espressioni estreme (95) e (96). Il risultato può essere scritto come

$$\boldsymbol{\tau}_{T} (\equiv \boldsymbol{\tau}_{L}) \equiv \boldsymbol{\tau}_{T,\parallel} + \boldsymbol{\tau}_{T,\perp}$$

$$= \frac{4}{15} \pi a^{5} \frac{\kappa_{1}}{2\kappa_{1} + 3\kappa_{2}} \left((\kappa_{1} + \kappa_{2})(\boldsymbol{\omega}_{0} \cdot \boldsymbol{B}_{0}) \boldsymbol{B}_{0} - (\kappa_{1} + 3\kappa_{2}) \|\boldsymbol{B}_{0}\|^{2} \boldsymbol{\omega}_{0} \right)$$

$$\equiv \chi_{1} \boldsymbol{B}_{0} + \chi_{2} \boldsymbol{\omega}_{0}, \qquad (97)$$

combinazione lineare (prevedibile) dei campi uniformi $\boldsymbol{B}_0 \in \boldsymbol{\omega}_0$. Le Eq. (95) e (96) sono dedotte dall'Eq. (97) per $\boldsymbol{\omega}_0 \equiv -\boldsymbol{\omega}_0 \hat{\boldsymbol{z}} \in \boldsymbol{\langle}(\boldsymbol{\omega}_0, \boldsymbol{B}_0) \equiv 0 \leq \pi \leq \pi/2$. Anche qui, la verifica è immediata.

Infine, sostituendo $\boldsymbol{\omega}_0 \equiv -\boldsymbol{\omega}_0 \hat{\boldsymbol{z}}$ e $\boldsymbol{B}_0 \equiv B_{0,x} \hat{\boldsymbol{x}} + B_{0,z} \hat{\boldsymbol{z}}$ nell'Eq. (97), si ottiene

П

$$\boldsymbol{\tau}_{T} = \frac{4}{15} \boldsymbol{\pi} a^{5} \boldsymbol{\omega}_{0} \frac{\boldsymbol{\kappa}_{1}}{2\boldsymbol{\kappa}_{1} + 3\boldsymbol{\kappa}_{2}} \left((\boldsymbol{\kappa}_{1} + \boldsymbol{\kappa}_{2}) \boldsymbol{B}_{0,x} \boldsymbol{B}_{0,z} \, \hat{\boldsymbol{x}} - (\boldsymbol{B}_{0,x}^{2} (\boldsymbol{\kappa}_{1} + 3\boldsymbol{\kappa}_{2}) + 2\boldsymbol{B}_{0,z}^{2} \boldsymbol{\kappa}_{2}) \hat{\boldsymbol{z}} \right)$$

$$\equiv \boldsymbol{\tau}_{L}, \qquad \text{com'era da attendersi (v. Eq. (94)),}$$

$$\equiv \boldsymbol{\tau}_{\perp} + \boldsymbol{\tau}_{R}.$$

La componente vettoriale *trasversa* del momento di forza *totale* subito dalla sfera conduttrice nel fluido conduttore (v. Eq. (94.1)),

$$\boldsymbol{\tau}_{\perp} \equiv \frac{4}{15} \pi a^5 \boldsymbol{\omega}_0 B_{0,x} B_{0,z} \frac{\boldsymbol{\kappa}_1 (\boldsymbol{\kappa}_1 + \boldsymbol{\kappa}_2)}{2 \,\boldsymbol{\kappa}_1 + 3 \,\boldsymbol{\kappa}_2} \,\hat{\boldsymbol{x}}$$
(99)

$$\equiv \frac{4}{15}\pi a^5 \frac{\kappa_1(\kappa_1 + \kappa_2)}{2\kappa_1 + 3\kappa_2} \left((\boldsymbol{\omega}_0 \cdot \boldsymbol{B}_0) \boldsymbol{B}_0 - (\boldsymbol{\omega}_0 \cdot \boldsymbol{B}_0 / \|\boldsymbol{\omega}_0\|)^2 \boldsymbol{\omega}_0 \right), \tag{100}$$

si manifesta quando il campo di induzione magnetica B_0 ha componenti vettoriali *longitudinale* e *trasversa* entrambe *non-nulle*. Rispetto a B_0 , la prima si riferisce alla configurazione di equilibrio *stabile* del sistema, la seconda a quella di equilibrio *instabile*. L'effetto dinamico di τ_{\perp} è quello di *forzare l'asse di rotazione, i.e.*, ω_0 , *ad allinearsi con* B_0 , portando il sistema alla configurazione di equilibrio stabile, i.e., di entropia *minima*.

Fig. 3 – Simulazione di vorticità TE 8-polari pure in un plasma tenue.

Appendice

Fig. 4 – Simulazione di vorticità TM 8-polari pure in un plasma tenue.

Funzioni Armoniche Sferiche dalla soluzione generale dell'Equazione DDP di Laplace

Con il metodo di separazione delle variabili, l'Equazione di Laplace in coordinate sferiche,

$$\nabla^{2} \boldsymbol{\Phi}(r,\theta,\varphi) \equiv \left(\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial}{\partial r}\right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) + \frac{1}{r^{2} (\sin \theta)^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} \right) \boldsymbol{\Phi}(r,\theta,\varphi) = 0,$$

in cui, $\{r, \theta, \varphi\} \in \mathbb{R}^+ \times [0, \pi] \times [0, 2\pi)$, ha la soluzione generale – la funzione *potenziale* a valori in \mathbb{C} – rappresentabile in serie di prodotti di auto-funzioni:

$$\Phi(r,\theta,\varphi) \equiv R(r)\Theta(\theta)F(\varphi)
= \sum_{l=0}^{+\infty} \sum_{m=-l}^{l} ((\alpha_{l}r^{l} + \beta_{l}/r^{l+1})) d
\downarrow (K_{l,m}P_{l}^{m}(\cos\theta) + N_{l,m}Q_{l}^{m}(\cos\theta))(C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi))).$$
(1)

Se $\{l, m\} \in \mathbb{Z}_0^+ \times \{0, 1, ..., l\} \iff m \ge 0$, la teoria (*formula di Rodrigues*) dà, nell'Eq. (1),

$$P_{l}^{m}(\cos\theta) := (1-u^{2})^{m/2} \frac{d^{m}}{du^{m}} P_{l}(u) \bigg|_{u=\cos\theta}, \qquad (1.1)$$

la *Funzione di Legendre Associata regolare* (o *di 1º tipo*), di *ordine l* e di *rango m*, la quale generalizza il *Polinomio di Legendre di grado l*, $P_l^0(\cos\theta) \equiv P_l(\cos\theta)$. Questo polinomio viene definito dall'espansione

$$P_{l}(\cos\theta) := \frac{1}{2^{l}} \sum_{k=0}^{\lfloor l/2 \rfloor} \frac{(-1)^{k} (2(l-k))!}{k! (l-k)! (l-2k)!} u^{l-2k} \bigg|_{u=\cos\theta},$$
(1.2)

dove, $\lfloor l/2 \rfloor$ indica la *parte intera (floor function*) di l/2 (e.g., $\lfloor 13\pi/7 \rfloor = 5$).

Sostituendo l'espressione (1.2) nella (1.1), eseguendo la derivazione m-sima indicata e vincolando la *non-negatività* di l - m - 2k – sia *esponente* sia *argomento* di fattoriale nel calcolo – si determina ordinatamente

$$\begin{split} P_l^m(u) &= \frac{(1-u^2)^{m/2}}{2^l} \sum_{k=0}^{\lfloor l/2 \rfloor} \frac{(-1)^k (2(l-k))!}{k!(l-k)!(l-2k)!} \frac{d^m}{du^m} u^{l-2k} \\ &\equiv \frac{(1-u^2)^{m/2}}{2^l} \sum_{k=0}^{\lfloor l/2 \rfloor} \frac{(-1)^k (2(l-k))!}{k!(l-k)!(l-2k)!} (l-2k) (l-2k-1) (l-2k-2) \dots (l-2k-m+1) u^{l-2k-m} \\ &\mapsto \frac{(1-u^2)^{m/2}}{2^l} \sum_{k=0}^{\lfloor (l-m)/2 \rfloor} \frac{(-1)^k (2(l-k))!}{k!(l-k)!(l-m-2k)!} u^{l-m-2k}. \end{split}$$

Allora, per $\theta \in [0, \pi]$ e $u \equiv \cos \theta$, risulta la rappresentazione goniometrica

$$P_l^m(\cos\theta) = \frac{(\sin\theta)^m}{2^l} \sum_{k=0}^{\lfloor (l-m)/2 \rfloor} \frac{(-1)^k (2(l-k))!}{k!(l-k)!(l-m-2k)!} (\cos\theta)^{l-m-2k}.$$
 (1.3)

Vs. l'insieme $\{-m\}$, simmetrico di $\{m\}$ (sotto la condizione $0 \le m \le l$), vale l'identità

$$P_{l}^{-m}(\cos\theta) = (-1)^{m} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(\cos\theta).$$
(1.4)

In modo analogo (altra formula di Rodrigues), viene definita la funzione log-irregolare

$$Q_{l}^{m}(\cos\theta) := (1-u^{2})^{m/2} \frac{d^{m}}{du^{m}} Q_{l}(u) \bigg|_{u=\cos\theta}, \qquad (1.5)$$

nota come la *Funzione di Legendre irregolare* (o *di 2º tipo*), di *ordine l* e di *rango m*, dalla quale, si determina la *Funzione di Legendre di 2º tipo di ordine l e di rango* 0, $Q_l^0(\cos\theta) \equiv Q_l(\cos\theta)$. Identità utili sono:

$$Q_0(\cos\theta) := \coth^{-1}(\cos\theta) = \frac{1}{2}\ln\frac{1+\cos\theta}{1-\cos\theta}, \qquad (1.5.1)$$

$$Q_{l}(\cos\theta)\Big|_{l\geq 1} = P_{l}(\cos\theta) Q_{0}(\cos\theta) - \sum_{k=0}^{l-1} \frac{(1-(-1)^{l+k})(2k+1)}{(l+k+1)(l-k)} P_{k}(\cos\theta), \qquad (1.5.2)$$

$$Q_l^{-m}(\cos\theta) = (-1)^m \frac{(l-m)!}{(l+m)!} Q_l^m(\cos\theta) \,.$$
(1.5.3)

Dall'Eq. generatrice (1.5), si vede immediatamente che le funzioni $Q_l^m(\cos\theta)$ posseggono due singolarità logaritmiche sull'asse Z, per $\theta \equiv 0$ e $\theta = \pi$, rispettivamente. Questo fatto implica che la richiesta di regolarità dell'Eq. (1) in tutto \mathbb{R}^3 è equivalente al vincolo $N_{l,m} \equiv 0$, $\forall \{l, m\}$, così che la forma regolare massimale di $\Phi(r, \theta, \varphi)$ risulta essere

$$\Phi(r,\theta,\varphi) = \sum_{l=0}^{+\infty} \sum_{m=0}^{l} (\alpha_l r^l + \beta_l / r^{l+1}) (K_{l,m} P_l^m(\cos\theta)) (C_{l,m}\cos(m\varphi) + S_{l,m}\sin(m\varphi)).$$
(2)

La richiesta ulteriore – fondamentale in Fisica Quantistica – di *orto-normalità* di entrambi i fattori angolari nell'Eq. (2) assegna, $\forall \{l, m\} \subset \mathbb{Z}_0^+ \land m \in \{0, 1, ..., l\}$, secondo la *convenzione di fase CSW* (*Condon-Shortley-Wigner*),

$$K_{l,m} \equiv \underbrace{(-1)^m}_{CSW} \frac{1}{2\pi^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2}, \qquad C_{l,m} \equiv 1, \qquad S_{l,m} \equiv i.$$
(2.1)

Con questi valori parametrici, viene determinata la Funzione Armonica Sferica orto-normalizzata di ordine l e di rango m,

$$Y_l^m(\theta,\varphi) := \frac{(-1)^m}{2\pi^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2} P_l^m(\cos\theta) e^{im\varphi},$$
(3)

orto-normalizzata, s'è detto, vs. sia θ che φ .

Considerazioni di simmetria fanno, poi, estendere la soluzione regolare (2) alla forma complessa

$$\begin{split} \Phi(r,\theta,\varphi) &= \sum_{l=0}^{+\infty} (\alpha_{l}r^{l} + \beta_{l}/r^{l+1}) \sum_{m=-l}^{l} Y_{l}^{m}(\theta,\varphi) \\ &\equiv Y_{0}^{0}(\theta,\varphi) \sum_{l=0}^{+\infty} (\alpha_{l}r^{l} + \beta_{l}/r^{l+1}) + \mathcal{A} \\ &\downarrow + \sum_{l=1}^{+\infty} (\alpha_{l}r^{l} + \beta_{l}/r^{l+1}) \sum_{m=0}^{l} (Y_{l}^{m}(\theta,\varphi) + Y_{l}^{-m}(\theta,\varphi)). \end{split}$$
(4)

La coniugazione complessa di $Y_l^m(\theta, \varphi)$ fornisce l'identità per $Y_l^{-m}(\theta, \varphi)$ nell'Eq. (4):

$$Y_l^{-m}(\theta,\varphi) \equiv (-1)^m (Y_l^m(\theta,\varphi))^*.$$
(5)

La separabilità reciproca delle variabili sferiche implica l'espandibilità *indipendente* del prodotto $\Theta(\theta) F(\phi)$. Quindi, sulla superficie sferica *unitaria* $(r \equiv 1)$ ed *equipotenziale*, $(\alpha_l + \beta_l = \lambda \neq 0 \forall l, \lambda \text{ costante})$, mediante le Idn. (3) e (5), si specializza l'Eq. (4) nella forma

$$\frac{\Phi(1,\theta,\varphi)}{\lambda} = \phi(\theta,\varphi) \coloneqq Y_0^0(\theta,\varphi) + \sum_{l=1}^{+\infty} \sum_{m=0}^{l} \left(Y_l^m(\theta,\varphi) + (-1)^m \left(Y_l^m(\theta,\varphi)\right)^*\right) \\
\equiv \frac{1}{2\pi^{1/2}} \left(1 + \sum_{l=1}^{+\infty} \sum_{m=0}^{l} \left(\frac{(2l+1)(l-m)!}{(l+m)!}\right)^{1/2} P_l^m(\cos\theta)\left((-1)^m e^{im\varphi} + e^{-im\varphi}\right)\right). \quad (6)$$

In quanto segue, sono riportate alcune proprietà algebriche – semplici ma, vs. le quali, non sono rare sviste nei calcoli – delle *Funzioni Armoniche Sferiche* nella convenzione *CSW* (infatti, è necessaria un'attenzione *sempre allertata* con le definizioni di $P_l(\cos\theta)$, $P_l^m(\cos\theta)$, $Q_l^m(\cos\theta)$ e $Y_l^m(\theta, \varphi)$

nella letteratura più datata, a causa di possibili convenzioni di fase *differenti* da quelle della Fisica Quantistica e dell'Elettrodinamica Classica (per intenderci: *a-là Jackson*), ormai consolidate. Tenendo presente che, in questo phys-notebook, è fissata la restrizione $m \ge 0$ per una gestione più agevole della convenzione *CSW*, si hanno:

•
$$(Y_l^m(\theta,\varphi))^* = \frac{(-1)^m}{2\pi^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!}\right)^{1/2} P_l^m(\cos\theta) e^{-im\varphi},$$
 (7.1)

•
$$\Re e(Y_l^{-m}(\theta, \varphi)) = (-1)^m \Re e(Y_l^m(\theta, \varphi))^* \equiv (-1)^m \Re e(Y_l^m(\theta, \varphi))$$

$$= \frac{1}{2\pi^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2} (P_l^m(\cos\theta)) \cos(m\varphi),$$
(7.2)

$$\Im \mathfrak{m} Y_{l}^{-m}(\theta, \varphi) = (-1)^{m} \Im \mathfrak{m} \left(Y_{l}^{m}(\theta, \varphi) \right)^{*} \equiv (-1)^{m+1} \Im \mathfrak{m} Y_{l}^{m}(\theta, \varphi)$$
$$= -\frac{1}{2\pi^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2} \left(P_{l}^{m}(\cos\theta) \right) \sin(m\varphi) \,. \tag{7.3}$$

Le espressioni (3) e (5) suggeriscono la possibilità di una definizione di una *base* in \mathbb{R} per le *Funzioni Armoniche Sferiche*. Queste funzioni *reali*, $\{\mathbb{Z}_l^m(\theta, \varphi)\}$, distinte, secondo l'indice m, in *Zonali* (m = 0), *Tesserali* ($m \in \{1, ..., l-1\}$) e *Settorali* (m = l), ricorrono nelle *espansioni in serie di multipoli* (e.g., dei potenziali elettromagnetici e gravitazionali) e sono determinabili dalle analoghe complesse. Qui di seguito, ne sono riportate le forme ammissibili in \mathbb{R} , coerenti con la convenzione *CSW* ($0 \le m \le l$):

• se $m \in \{1, ..., l\}$, allora,

$$\mathcal{Z}_{l}^{m}(\theta,\varphi) := \frac{1}{2^{1/2}} \left(Y_{l}^{-m}(\theta,\varphi) + (-1)^{m} (Y_{l}^{m}(\theta,\varphi)) \right) \equiv (-1)^{m} 2^{1/2} \mathfrak{Re} Y_{l}^{m}(\theta,\varphi)$$
$$= \frac{1}{(2\pi)^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2} P_{l}^{m}(\cos\theta) \cos(m\varphi);$$
(8.1)

$$\mathcal{Z}_{l}^{-m}(\theta,\varphi) := \frac{i}{2^{1/2}} (Y_{l}^{-m}(\theta,\varphi) - (-1)^{m} (Y_{l}^{m}(\theta,\varphi))) \equiv (-1)^{m} 2^{1/2} \Im \mathfrak{m} Y_{l}^{m}(\theta,\varphi)$$
$$= \frac{1}{(2\pi)^{1/2}} \left(\frac{(2l+1)(l-m)!}{(l+m)!} \right)^{1/2} P_{l}^{m}(\cos\theta) \sin(m\varphi),$$
(8.2)

se m = 0, si assume, semplicemente,

$$\mathcal{Z}_{l}^{0}(\theta, \varphi) :\equiv Y_{l}^{0}(\theta, \varphi) = \frac{1}{2} \left(\frac{2l+1}{\pi}\right)^{1/2} P_{l}^{0}(\cos\theta) \equiv \frac{1}{2\pi^{1/2}} (2l+1)^{1/2} P_{l}(\cos\theta).$$
(8.3)

Armonica sferica reale orto-normalizzata $\{\mathcal{Z}_{5}^{-2}(\theta, \varphi)\} \mapsto f(u, v)$

Dall'autore (<u>cldmgn011047@gmail.com</u>), sono disponibili, a richiesta, come allegati TXT alle risposte, lo zip-archivio delle *routines* per il tracciamento con *GNUplot*TM dei grafici 3-dim (superfici) delle $\mathcal{Z}_l^{\pm m}(\theta, \varphi)$, con l = 0, ..., 5 e $\forall m$ compatibile con tali valori di l.

Bibliografia Il numero d'ordine *evidenziato* di un testo, e.g., [¹], ne indica la versione PDF, talvolta *contenuta* in un archivio-zip scaricabile dalla pagina Library di questo web-site: <u>https://www.cm-physmath.net/libr_page.html</u>.

Riferimenti generali

- JACKSON, J. D., Classical Electrodynamics, 3RD ED., CH. 2, 3, JOHN WILEY & SONS, INC. (1999; REV. 2006);
- [²] PANOFSKY, W. K. PHILLIPS, M., Classical Electricity and Magnetism, 2ND ED., P. 119, ADDISON-WESLEY PUBL. CO. (1972);
- ^[3] SMYTHE, W. R., *Static and Dynamic Electricity*, 3RD ED., MCGRAWHILL, INC. (1968);
- ^[4] STRATTON, J. A., *Electromagnetic Theory*, WILEY-IEEE PRESS (1941; repr. 2007);
- ^[5] WANGSNESS, R. K., *Electromagnetic Fields*, 2ND ED., P.S 137 & 356, JOHN WILEY & SONS, INC. (1986);
- [6] REITZ, J. R. MILFORD, F. J. CHRISTY, R. W., Foundations of Electromagnetic Theory, 4th ED., P.S 142-143, ADDISON-WESLEY PUBL. CO. (2008);
- [⁷] MARION, J. B. HEALD, M. A., *Classical Electromagnetic Radiation*, 2ND ED., CH. 2, 3, 4, ACADEMIC PR. (1980);
- [8] OHANIAN, H. C., *Classical Electrodynamics*, ALLYN & BACON, INC. (1988);
- [⁹] JEFIMENKO, O. D., *Electricity and Magnetism*, 2ND ED., ELECTRET SCIENTIFIC CO. (1989);
- [10] LORRAIN, P. CORSON, D. R. LORRAIN, F., *Electromagnetic Fields and Waves*, 3RD ED., W. H. FREEMAN & CO. (1988);
- [¹¹] GRIFFITHS, D. J., Introduction to Electrodynamics, 4TH ED., PRENTICE-HALL, INC. (2012);
- [¹²] THIDÉ, B., ET AL., *Electromagnetic Field Theory*, con/esercizi risolti, 2ND ED., Uppsala Un., Dept. of Physics and Astronomy;
- ^[13] FRANKL, D. R., *Electromagnetic Theory*, PRENTICE-HALL, INC. (1986);
- [¹⁴] SHADOWITZ, A., *The Electromagnetic Field*, MCGRAWHILL, INC. (1975).

Strumenti matematici

- [¹⁵] ARFKEN, G. B. WEBER, H. J. HARRIS, F. E., *Mathematical Methods for Physicists*, 7TH ED., §§ 15.3-15.6, ACADEMIC PRESS (2013);
- [¹⁶] HILDEBRAND, F. B., Advanced Calculus for Applications, 2ND ED., P.S 456-458, PRENTICE-HALL, INC. (1976);
- [¹⁷] MORSE, P. M., FESHBACH, H., *Methods of Theoretical Physics*, **I** & **II**, MCGRAW-HILL BOOK CO. (1953);
- [¹⁸] LEBEDEV, N. N. SKALSKAYA, I. P. UFLYAND, Y. S., Worked Problems in Applied Mathematics, DOVER PUBNS., INC. (1979);
- ^[19] BERG, P. W. MCGREGOR, J. L., *Elementary Partial Differential Equations*, HOLDEN-DAY, INC. (3RD PR., 1969);
- [²⁰] TYCHONOV, A. N. SAMARSKI, A. A., Partial Differential Equations of Mathematical Physics, 1, CH. 4 (1964); 2, CH. 5 & 7 (1967), HOLDEN-DAY, INC.;
- ^[21] DUCHATEAU, P. ZACHMANN, D. W., *Theory and Problems of PARTIAL DIFFERENTIAL EQUATIONS*, SCHAUM'S OUTLINE SERIES, MCGRAW-HILL (1986);
- [²²] GARABEDIAN, P. R., Partial Differential Equations, JOHN WILEY & SONS, INC. (1964);
- [²³] PAGANI, C. D. SALSA, S., Analisi Matematica, 2, P. 11, ZANICHELLI (RIST. 1998).;
- [²⁴] SPIEGEL, M. R., ADVANCED MATHEMATICS for Scientists and Engineers, SCHAUM'S OUTLINE SERIES, MCGRAW-HILL BOOK CO. (1971).